
Yangjun Chen 1

Bipartite Graphs

• What is a bipartite graph?

• Properties of bipartite graphs

• Matching and maximum matching

 - alternative paths

 - augmenting paths

• Hopcroft-Karp algorithm

Yangjun Chen 2

Bipartite Graph

 1. A graph G is bipartite if the node set V can

be partitioned into two sets V1 and V2 in such a

way that no nodes from the same set are

adjacent.

 2. The sets V1 and V2 are called the color

classes of G and (V1, V2) is a bipartition of G.

In fact, a graph being bipartite means that the

nodes of G can be colored with at most two

colors, so that no two adjacent nodes have the

same color.

Yangjun Chen 3

Bipartite Graph

3. We will depict bipartite graphs with their

nodes colored black and white to show one

possible bipartition.

4. We will call a graph m by n bipartite, if |V1| =

m and |V2| = n, and a graph a balanced

bipartite graph when |V1| = |V2|.

v1

v2 v3

v4

v5 v6

v7

v8

v7

v8

v1 v3 v5

v2 v4 v6

Fig. 1
(a) (b)

Yangjun Chen 4

Properties

Property 3.1 A connected bipartite graph has a

unique bipartition.

Property 3.2 A bipartite graph with no isolated

nodes and p connected components has 2p-1

bipartitions.

For example, the bipartite graph in the above

figure has two bipartitions. One is shown in the

figure and the other has V1 = {v1, v3, v5, v8} and V2

= {v2, v4, v6, v7}.

Yangjun Chen 5

Properties

The following theorem belongs to König (1916).

Theorem 3.3 A graph G is bipartite if and only if
G has no cycle of odd length.

Corollary 3.4 A connected graph is bipartite if
and only if for every node v there is no edge (x, y)
such that distance(v, x) = distance(v, y).

Corollary 3.5 A graph G is bipartite if and only if
it contains no closed walk of odd length.

v

x

y

Yangjun Chen 6

Matching and Maximum Matching

 Maximum matching

 - A set of edges in a bipartite graph G is called
 a matching if no two edges have a common
 end node.

 - A matching with the largest possible number
 of edges is called a maximum matching.

Example. A maximum matching for the bipartite graph in Fig. 1(b)

is shown below.
v7

v8

v1 v3 v5

v2 v4 v6

v7

v8

v1 v3 v5

v2 v4 v6

Yangjun Chen 7

Maximum Matching

 Maximum matching

 - Many discrete problems can be formulated as
 problems about maximum matchings. Consider, for
 example, probably the most famous:

 A set of boys each know several girls, is it possible
 for the boys each to marry a girl that he knows?

 This situation has a natural representation as a bipartite graph
with bipartition (V1, V2), where V1 is the set of boys, V2 the set
of girls, and an edge between a boy and a girl represents that
they know one another. The marriage problem is then the
problem: does a maximum matching of G have |V1| edges?

Yangjun Chen 8

Alternative and Augmenting Path

 Maximum matching

 Let M be a matching of a graph G.

 - A node v is said to be covered, or saturated by M, if
 some edge of M is incident with v. We will also
 call an unsaturated node free.

 - A path or cycle is alternative, relative to M, if its
 edges are alternatively in M and E\M.

 - A path is an augmenting path if it is an alternating
 path with free origin and terminus.

 - P - a path. C - a cycle.

 |P| - the number of edges in P

 |C| - the number of edges in C.

Yangjun Chen 9

Properties of Matchings

Property 3.3 Let M be a matching and P an augmenting
path relative to M. Then the symmetric difference of M
and P, denoted M D P, is also a matching of G and |M D
P| = |M| + 1.

M D P = (M\P) (P\M)

Example.

v4

u4

v1 v2 v3

u1 u2 u3

v5 v4

u4

v1 v2 v3

u1 u2 u3

v5

v4

u4

v1 v2 v3

u1 u2 u3

v5 v4

u4

v1 v2 v3

u1 u2 u3

v5 M:

P: M D P:

(a) (b)

(c) (d)

Yangjun Chen 10

Properties of Matchings

Property 3.4 Let M and M’ be matchings in G. Then, each
connected component of M D M’ is one of the following:

 (1) an even cycle with edges alternatively in M\M’ and M’\M,
or

 (2) a path whose edges are alternatively in M\M’ and M’\M.

v4

u4

v1 v2 v3

u1 u2 u3

v5 M’:
v4

u4

v1 v2 v3

u1 u2 u3

v5 M:

v4

u4

v1 v2 v3

u1 u2 u3

v5 M D M’:

(a) (b)

(c)

Yangjun Chen
11

v4

u4

v1 v2 v3

u1 u2 u3

v5 M2:
v4

u4

v1 v2 v3

u1 u2 u3

v5 M1:

v4

u4

v1 v2 v3

u1 u2 u3

v5
M1 D M2:

G1 G2

This edge is considered to

be an augmenting path

relative to M1, also to M2.

G3

Yangjun Chen 12

Properties of Matchings

Proposition 3.5 Let M and M’ be matchings in G. If |M| = r, |M’| =
s and s > r, then M D M’ contains at least s - r node-disjoint
augmenting paths relative to M.

Proof. Let the components of M D M’ be C1, C2, ..., Ck. Let f(Ci) =
|Ci M’| - |Ci M| (1 i k). Then it follows from Property 3.4
that f(Ci) {-1, 0, 1} for each 1 i k. f(Ci) = 1 if and only if Ci is
an augmenting path relative to M. To complete the proof, we need
only observe that

 = |M’\M| - |M\M’| = |M’| - |M| = s - r.

Thus, there are at least s - r components with f(Ci) = 1, and at least
s - r node-disjoint augmenting paths relative to M.

Ci contains one more edge from M’ or from M.

k

j
iCf

1

)(

Yangjun Chen
13

M D M’

… … … …

C1 Ci

If Ci is a cycle or an even path, f(Ci) = 0.

If Ci is an augmenting path relative to M’, f(Ci) = -1.

If Ci is an augmenting path relative to M, f(Ci) = 1.

k

j
iCf

1

)(= s - r

Ck

Yangjun Chen 14

Properties of Matchings

Combining Proposition 3.5 with Property 3.3, we can deduce the
following theorem (Berge, 1957).

Theorem 3.6 M is a maximum matching if and only if there is no
augmenting path relative to M.

Proof. If-part. If there is no augmenting path, M must be a
maximum matching. Otherwise, let M’ be a maximum matching.
According to Proposition 3.5, M D M’ contains at least |M’| - |M|
node-disjoint augmenting paths relative to M. Contradiction.

Only-if-part. If M is a maximum matching, there is definitely no
augmenting path relative to M. Otherwise, let P be an augmenting
path relative to M. Then, M D P is a larger matching than M.

Yangjun Chen 15

Properties of Matchings

The above theorem implies the following property.

Property 3.7 If M is a matching of G, then there exists a maximum
matching M of G such that the set of nodes covered by M is also
covered by M.

Proof. If M is a maximum matching, the property trivially holds.
Otherwise, consider an augmenting path P relative to M. Then,
according to Property 3.1, M D P is also a matching of G with

 |M D P| = |M| + 1.

Moreover, the nodes covered by M are also covered by M D P.
Repeating the above process will prove the property.

Yangjun Chen 16

Properties of Matchings

The following theorem was obtained by Dulmage and Mendelsohn
(1958).

Theorem 3.8 Let G be a bipartite graph with bipartition (V1, V2). Let M1

and M2 be matchings in G. Then, there is a matching M M1 M2 such

that M covers all the nodes of V1 covered by M1 and all the nodes of V2

covered by M2.

Proof. Let Ui be the nodes of V1 covered by Mi (i = 1, 2). Let Wi be the

nodes of V2 covered by Mi (i = 1, 2). Let G1, G2, ..., Gk be the connected

components of M1 D M2. By Property 3.4, each Gi (1 i k) is an even

cycle or a path. Let M1i = Gi M1 and M2i = Gi M2. Define in each Gi a

matching pi:
M1i

M1i

M2i

if Gi is a cycle

if there is a node v V (U1\U2) in Gi

if there is a node v V (W2\W1) in Gi

pi =

Then, it is not difficult to check that M = (M1 M2) p1 p2 ... pk

is the required matching.

Yangjun Chen 17

v4

u4

v1 v2 v3

u1 u2 u3

v5 M2:
v4

u4

v1 v2 v3

u1 u2 u3

v5 M1:

v4

u4

v1 v2 v3

u1 u2 u3

v5
M1 D M2:

U1 = {v1, v3, v4} U2 = {v2, v3, v4, v5}

W1 = {u1, u2, u3} W2 = {u1, u2, u3, u4}

G1

G2

p1 = M11 = G1 M1

p2 = M12 = G2 M1

G3
p3 = M23 = G3 M2

M = (M1 M2) p1 p2 p3

Yangjun Chen 18

Properties of Matchings

Theorem 3.9 A maximum matching M of a bipartite graph G can

be obtained from any other maximum matching M’ by a sequence

of transfers along alternating cycles and paths of even length.

Proof. By Property 3.4, every component of M D M’ is an

alternating even cycle or an alternating path relative to M’. By

Property 3.3 and Theorem 3.6, a component of M D M’, if it is a

path, must be of even length. (Otherwise, if it is an odd path, it

must be an augmenting path relative to M or to M’, contradicting

the fact that both M and M’ are maximum.) Then, changing M’ in

each component in turn will transform M’ into M.

v4

u4

v1 v2 v3

u1 u2 u3

v5 M2:
v4

u4

v1 v2 v3

u1 u2 u3

v5 M1:

Yangjun Chen 19

v4

u4

v1 v2 v3

u1 u2 u3

v5 M2:
v4

u4

v1 v2 v3

u1 u2 u3

v5 M1:

v4

u4

v1 v2 v3

u1 u2 u3

v5
M1 D M2:

G1

G2

Yangjun Chen 20

Properties of Matchings

A perfecting matching of a graph G is a matching which covers

every node of G. Clearly, if a graph has two perfect matchings M

and M’, all components of M D M’ are even cycles. Therefore,

according to Theorem 3.9, we can deduce the following result.

Corollary 3.10 Assume that bipartite graph G has a perfect

matching M. Then, any other perfect matching can be obtained

from M by a sequence of transfers along alternating cycles relative

to M.

v3

u3

v1 v2

u1 u2

v3

u3

v1 v2

u1 u2

v3

u3

v1 v2

u1 u2

M1: M2:

Yangjun Chen 21

v4

u4

v1 v2 v3

u1 u2 u3

M’:
v4 v1 v2 v3

u1 u2 u3

M:

v4 v1 v2 v3

u1 u2 u3

M D M’:

(a) (b)

(c)

Maximum, but not perfect matching

Yangjun Chen 22

Algorithm

 Algorithms - finding a maximum matching

 Lemma 3.11 Let M be a matching with |M| = r and suppose that

the cardinality of a maximum matching is s. Then, there exists

an augmenting path relative to M of length at most 2r/(s – r)+

1.

 Proof. Let M’ be a maximum matching. Then, by Proposition

3.5, M D M’ contains s - r node-disjoint augmenting paths

relative to M. It is easy to see that these paths contain at most r

edges from M. So one of these augmenting paths must contain

at most r/(s – r) edges from M and so at most 2 r/(s – r) + 1

edges altogether.

Yangjun Chen
23

 Proof. Let M’ be a maximum matching. Then, by Proposition

3.5, M D M’ contains s - r node-disjoint augmenting paths

relative to M. It is easy to see that these paths contain at most r

edges from M. So one of these augmenting paths must contain

at most r/(s – r) edges from M and so at most 2 r/(s – r) + 1

edges altogether.

Since s > r, there is at lease s – r augmenting paths in M D M’ . On

each of them the number of edges in M’ is one larger than the

number of edges in M.

Consider these augmenting paths:

P1 Pi

… … … …

If each Pi contains more than r/(s – r) edges, then M will have more

than r edges. Contradiction.

at least s – r augmenting paths

relative to M

Yangjun Chen 24

Algorithm

Lemma 3.12 Let M be a matching and P be a shortest augmenting

path relative to M. Let Q be an augmenting path relative to M D P.

Then, |Q| |P| + 2|P Q|.

Proof. Consider M’ = M D P D Q. Then, M’ is a matching. By

Property 3.3, |M’| = |M D P| + 1 = (|M| + 1) + 1 = |M| + 2.

According to Proposition 3.5, M D M’ contains at least two node-

disjoint augmenting paths relative to M. Let P1, ..., Pk (k 2) be

such paths. Since P is a shortest augmenting path relative to M, we

have

 |M D M’| = |M D (M D P D Q) | = | D P D Q |

 = |P D Q| |P1| + ... + |Pk| 2|P|.

Note that |P D Q| = |P| + |Q| - 2|P Q| 2|P|. Therefore, we have

|Q| |P| + 2|P Q|.

Yangjun Chen 25

About symmetric difference

Commutative:

M D P= P D M

 M P

M

Q P

M D P D Q

= M D (P D Q)

= (M D P) D Q

Associative:

Yangjun Chen 26

Algorithm

Corollary 3.13 Let P be a shortest augmenting path relative to a

matching M, and Q be a shortest augmenting path relative to M D

P. Then, if |P| = |Q|, the paths P and Q must be node-disjoint.

Moreover, Q is also a shortest augmenting path relative to M.

Proof. According to Lemma 3.12, we have |P| = |Q| |P| + 2|P
Q|. So P Q = F. Thus, P and Q are edge-disjoint. Assume that P
and Q share a common node v. Consider the edge e incident with v
in M D P. Then, P and Q must share e, contradicting P Q = F.
Therefore, P and Q are also node-disjoint.

P

Q

v

e M

e M D P

e must be on Q since Q is an augmenting path of M D P.

P

Q

P and Q are node-disjoint.

Yangjun Chen 27

Algorithm

Hopcroft-Karp algorithm (1973)

The whole computation process is divided into a number of stages,

at which some partial matching has been constructed and some way

is sought to increase it. At stage i, we have the matching Mi and we

search for {Q1, Q2, ..., Qk}, a maximal set of node-disjoint, shortest

augmenting paths, relative to Mi. Then, according to Corollary

3.13, Q2 is a shortest augmenting path relative to M D Q1, Q3 is a

shortest augmenting path relative to (M D Q1) D Q2, ..., and Qk is a

shortest augmenting path relative to (M D Q1 D Q2 ... D Qk-2) D Qk-1.

Therefore, the new matching for the next stage is formed as

 Mi+1 = Mi D Q1 D Q2 ... D Qk.

Yangjun Chen 28

Algorithm

Yangjun Chen 29

Yangjun Chen 30

Algorithm

Main process:

G M1 G1 G1
Node-disjoint augmenting

paths P1

M2 G2 G2
Node-disjoint augmenting

paths P2

M3 G3 G3
Node-disjoint augmenting

paths P3

M1 D P1

M2 D P2

M3 D P3
…

 …

Randomly choose

some edges as M1.

Yangjun Chen 31

Algorithm

Let Mi be the matching of G produced at stage i. We
define a directed graph Gi (called an alternating graph)
with the same node set as G, but with edge set

 E(Gi) = {u v | u V1, v V2, and (u, v) E\Mi}
 {v u | u V1, v V2, and (u, v) Mi}.

 v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

(a) (b)

(c)

V1:

V2:

V1:

V2:

Yangjun Chen 32

Algorithm

First step:

From Gi, construct a subgraph Gi (called a layered
graph) described below.

 Let L0 be the set of free nodes (relative to Mi) in V1

and define Lj (j > 0) as follows:

 Ej-1 = {u v E(Gi) | u Lj-1, v L0 L1 ... Lj-1},

 Lj = {v V(Gi) | for some u, u v Ej-1}.

Define j* = min{j| Lj {free nodes in V2} Ф}. Gi is
formed with V(Gi) and E(Gi) defined below.

u4 u1 u2 u3 u5 u6

V1:

V2:

v4 v1 v2 v3 v5 v6

L0

L1

Yangjun Chen 33

Algorithm

First step:

If j* = 1, then

 V(G1) = L0 (L1 {free nodes in V2}),

 E(G1) = {u v | u L0 and v {free nodes in V2}}.

If j* > 1, then

 V(Gi) = L0 L1 ... Lj*-1 (Lj* {free nodes in
 V2}),

 E(Gi) = E0 E1 ... Ej*-2 {u v | u Lj*-1 and
 v {free nodes in V2}}.

With this definition of the graph Gi, directed paths from
L0 to Lj* are precisely in one-to-one correspondence with
shortest augmenting paths relative to Mi in G.

Yangjun Chen 34

Algorithm

Second step:

In this step, we will traverse Gi in a depth-first searching
fashion to find a maximal set of node-disjoint paths from
L0 to Lj*.

• For this, a stack structure stack is used to control the
graph exploring.

• In addition, we use c-list(v) to represent the set of v’s
child nodes.

Yangjun Chen 35

Algorithm
Algorithm finding-augmenting-paths(Gi)

begin

1. let x be the first element in L0;

2. push(x, stack); mark v;

3. while stack is not empty do {

4. v := top(stack);

5. while c-list(v) Ф do {

6. let u be the first element in c-list(v);

7. if u is marked then remove u from c-list(v)

8. else {push(u, stack); mark u; v := u;}

9. }

10. if v is neither in Lj* nor in L0 then pop(stack)

11. else {if v is in Lj* then output all the elements in stack;

 (*all the elements in stack make up an augmenting path.*)

12. remove all elements in stack;

13. let v be the next element in L0;

14. push(v, stack); mark v;

15. }

end

v1

u1

v6

u6
v1
u1
v6
u6

v1 v5

u1 u3 u5

v6 v2

u6 u2

G2:

v4

Yangjun Chen 36

Example Trace
Example.

 v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

M1:

G1:

(a)

(b)

(c)

Yangjun Chen 37

G1 will be constructed as follows:

L0 = {v1, v4, v5}

E0 = {(v1, u1), (v4, u4), (v4, u5), (v5, u3), (v5, u5)}

L1 = {u1, u3, u4, u5} /*j* = 1 since u5 is free.*/

(If u5 is not free, the following layers will be

constructed.)

E1 = {(u1, v6), (u3, v2), (u4, v3)}

L2 = {v6, v2, v3}

E2 = {(v6, u6), (v3, u3), (v2, u2)}

L3 = {u6, u2}

/*u3 is not in L3 since it already appears in L1 .

v1 v4 v5

u1 u4 u5

v6 v3

u6 u3

v2

u2

G1:

Yangjun Chen 38

Example Trace

Since L1 contains free node u5 in V2, j* = 1.
Therefore, we have

 V(G1) = {v1, v4, v5} {u5}, and

 E(G1) = {(v4, u5), (v5, u5)}

Note that v4 u5 is an augmenting path relative
to M1, and v5 u5 is another. By applying the
second step of Hopcroft-Karp algorithm to G1,
v4 u5 will be chosen, yielding a new matching
M2 = M1 D {v4 u5} as shown in the following
figure.

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

v1 v4 v5

u5

G1:

Yangjun Chen 39

Example Trace

At a next stage, we will construct G2 as shown in Figure
7. G2 will then be constructed as follows:

L0 = {v1, v5},

E0 = {(v1, u1), (v5, u3), (v5, u5)},

L1 = {u1, u3, u5},

E1 = {(u1, v6), (u3, v2), (u5, v4)},

L2 = {v2, v4, v6},

E2 = {(v2, u2), (v4, u4), (v6, u6)},

L3 = {u2, u4, u6},

/*j* = 3 since u2 and u6 are free.*/

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

G2:

v1 v5

u1 u3 u5

v6 v2

u6 u2

G2:

v4 E3 = {(u4, v3)},
L4 = {v3},
E4 = {(v3, u3)}.

This part will not

be created.

Yangjun Chen 40

L0 = {v1, v5},

E0 = {(v1, u1), (v5, u3), (v5, u5)},

L1 = {u1, u3, u5},

E1 = {(u1, v6), (u3, v2), (u5, v4)},

L2 = {v2, v4, v6},

E2 = {(v2, u2), (v6, u6) , (v4, u4)},

L3 = {u2, u6 , u4}.

/*j* = 3 since u2 and u6 are free.*/

v1 v5

u1 u3 u5

v6 v2

u6 u2

G2:

v4

Since L3 contains two free nodes u2 and u6 in V2, j* = 3.
So we have

 V(G2’) = L0 L1 L2 {u2, u6}, and

 E(G2’) = E0 E1 {(v2, u2), (v6, u6)}.

Yangjun Chen 41

Example Trace

Since L3 contains two free nodes u2 and u6 in V2, j* = 3.
So we have

 V(G2’) = L0 L1 L2 {u2, u6}, and

 E(G2’) = E0 E1 {(v2, u2), (v6, u6)}.

In Fig. 8, we show G2’, which contains two augmenting
paths P1 and P2, where P1 = v1 u1 v6 u6
(represented by red edges in Fig. 8) and P2 = v5 u3 v2
 u2 (represented by blue edges in Fig. 8) .

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

Yangjun Chen 42

Example Trace

In Fig. 8, we show G2, which contains two augmenting
paths P1 and P2, where P1 = v1 u1 v6 u6 and P2 =
v5 u3 v2 u2. By applying the second step of
Hopcroft-Karp algorithm, these two augmenting paths
will be found. The maximum matching M3 = M2 D P1 D
P2 is shown in Fig. 9.

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

v1 v5

u1 u3 u5

v6 v2

u6 u2

G2:

v4

P1 P2

Yangjun Chen 43

Example Trace

In order to have a better understanding of the second step
of Hopcroft-Karp algorithm, we trace the execution steps
when applying it to the graph shown in Figure 8.

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

Step 1:

Step 2:

Step 3:

L0 = {v1, v5}

push(v1, stack); mark v1;

c-List(v1) = {u1}

push(u1, stack); mark u1;

c-List(u1) = {v6}

push(v6, stack); mark v6;

v1

u1
v1

v6
u1
v1

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

M3: G2:

v1 v5

u1 u3 u5

v6 v2

u6 u2

G2:

v4

Yangjun Chen 44

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

Step 4:

Step 5:

c-List(v6) = {u6};

push(u6, stack); mark u6;

c-List(u6) = ;

u6 is in L3; /* j* = 3.*/;

Output all the nodes in stack,

which make up an augmenting

path:

v1 u1 v6 u6 ;

empty stack;

push(v5, stack); mark v5;

/* v5 is the next element in L0.*/

v5

u6
v6
u1
v1

L3 = {u2, u4, u6}

L0 = {v1, v5}

u6 is a free

node.

Yangjun Chen 45

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

Step 6:

Step 7:

Step 8:

c-List(v5) = {u5, u3};

push(u5, stack); mark u5;

c-List(u5) = {v4};

push(v4, stack); mark v4;

c-List(v4) = ;

v4 is neither in L3 nor in L0;

/*j* = 3. */

pop(stack);

u5
v5

v4
u5
v5

u5
v5

L3 = {u2, u4, u6}

L0 = {v1, v5}

Yangjun Chen 46

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

Step 9:

Step 10:

Step 11:

c-List(u5) = {v4};

v4 is marked; remove v4 from the list;

c-List(u5) = ;

u5 is neither in L3 nor in L0;

pop(stack);

c-List(v5) = {u3}; /* u5 is removed from c-List(v5).*/

push(u3, stack); mark u3;

c-List(u3) = {v2};

push(v2, stack); mark v2;

u3
v5

v2
u3
v5

v5

L3 = {u2, u4, u6}

L0 = {v1, v5}

Yangjun Chen 47

v4

u4

v1 v2 v3

u1 u2 u3

v5 v6

u5 u6

Step 12:

Step 13:

c-List(v2) = {u2};

push(u2, stack); mark u2;

c-List(u2) = ;

u2 is in L3; /* j* = 3. */;

Output all the nodes in stack, which

make up an augmenting path:

v5 u3 v2 u2;

empty stack;

Now stack is empty and no element

in L0 will be pushed into stack.

Stop.

u2
v2
u3
v5

L3 = {u2, u4, u6}

L0 = {v1, v5}

Yangjun Chen 48

Bipartite Graph

Hopcroft-Karp algorithm (1973)

In the above example, we choose the matching shown in Figure

5(b) as an initial matching for ease of explanation. In fact, we can

choose any edge in the bipartite graph as an initial matching and

then apply Hopcroft-Karp algorithm. Of course, the final matching

found may be different from that shown in Figure 9.

Yangjun Chen 49

Project Requirement

1. Implementation of the algorithm in C++.

2. Documentation.

