
Yangjun Chen 1 

Bipartite Graphs 

• What is a bipartite graph? 

• Properties of bipartite graphs 

• Matching and maximum matching 

 - alternative paths 

 - augmenting paths 

• Hopcroft-Karp algorithm 
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Bipartite Graph 

 1. A graph G is bipartite if the node set V can 

be partitioned into two sets V1 and V2 in such a 

way that no nodes from the same set are 

adjacent. 

 2. The sets V1 and V2 are called the color 

classes of G and (V1, V2) is a bipartition of G. 

In fact, a graph being bipartite means that the 

nodes of G can be colored with at most two 

colors, so that no two adjacent nodes have the 

same color. 
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Bipartite Graph 

3. We will depict bipartite graphs with their 

nodes colored black and white to show one 

possible bipartition. 

4. We will call a graph m by n bipartite, if |V1| = 

m and |V2| = n, and a graph a balanced 

bipartite graph when |V1| = |V2|. 

v1 

v2 v3 

v4 

v5 v6 

v7 

v8 

v7 

v8 

v1 v3 v5 

v2 v4 v6 

Fig. 1 
(a) (b) 
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Properties 

Property 3.1 A connected bipartite graph has a 

unique bipartition. 

Property 3.2 A bipartite graph with no isolated 

nodes and p connected components has 2p-1 

bipartitions. 

For example, the bipartite graph in the above 

figure has two bipartitions. One is shown in the 

figure and the other has V1 = {v1, v3, v5, v8} and V2 

= {v2, v4, v6, v7}. 
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Properties 

The following theorem belongs to König (1916). 

Theorem 3.3 A graph G is bipartite if and only if 
G has no cycle of odd length. 

Corollary 3.4 A connected graph is bipartite if 
and only if for every node v there is no edge (x, y) 
such that distance(v, x) = distance(v, y). 

Corollary 3.5 A graph G is bipartite if and only if 
it contains no closed walk of odd length. 

v 

x 

y 
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Matching and Maximum Matching 

 Maximum matching 

 - A set of edges in a bipartite graph G is called 
 a matching if no two edges have a common 
 end node. 

 - A matching with the largest possible number 
 of edges is called a maximum matching. 

Example. A maximum matching for the bipartite graph in Fig. 1(b) 

is shown below. 
v7 

v8 

v1 v3 v5 

v2 v4 v6 

v7 

v8 

v1 v3 v5 

v2 v4 v6 
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Maximum Matching 

 Maximum matching 

 - Many discrete problems can be formulated as 
 problems about maximum matchings. Consider, for 
 example, probably the most famous: 

  A set of boys each know several girls, is it possible 
 for the boys each to marry a girl that he knows? 

 This situation has a natural representation as a bipartite graph 
with bipartition (V1, V2), where V1 is the set of boys, V2 the set 
of girls, and an edge between a boy and a girl represents that 
they know one another. The marriage problem is then the 
problem: does a maximum matching of G have |V1| edges? 
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Alternative and Augmenting Path 

 Maximum matching 

 Let M be a matching of a graph G. 

 - A node v is said to be covered, or saturated by M, if 
 some edge of M is incident with v. We will also 
 call an unsaturated node free. 

 - A path or cycle is alternative, relative to M, if its 
 edges are alternatively in M and  E\M. 

 - A path is an augmenting path if it is an alternating 
 path with free origin and terminus. 

 - P - a path. C - a cycle. 

  |P| - the number of edges in P 

  |C| - the number of edges in C. 
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Properties of Matchings 

Property 3.3 Let M be a matching and P an augmenting 
path relative to M. Then the symmetric difference of M 
and P, denoted M D P, is also a matching of G and |M D 
P| = |M| + 1. 

M D P = (M\P)  (P\M) 

Example. 

 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M: 

P: M D P: 

(a) (b) 

(c) (d) 
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Properties of Matchings 

Property 3.4 Let M and M’ be matchings in G. Then, each 
connected component of M D M’ is one of the following: 

 (1) an even cycle with edges alternatively in M\M’ and M’\M, 
or 

 (2) a path whose edges are alternatively in M\M’ and M’\M. 

 

 
v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M’: 
v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M: 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M D M’: 

(a) (b) 

(c) 
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v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M2: 
v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M1: 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 
M1 D M2: 

G1 G2 

This edge is considered to 

be an augmenting path  

relative to M1, also to M2. 

G3 
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Properties of Matchings 

Proposition 3.5 Let M and M’ be matchings in G. If |M| = r, |M’| = 
s and s > r, then M D M’ contains at least s - r node-disjoint 
augmenting paths relative to M. 

Proof. Let the components of M D M’ be C1, C2, ..., Ck. Let f(Ci) = 
|Ci  M’| - |Ci  M| (1  i  k). Then it follows from Property 3.4 
that f(Ci)  {-1, 0, 1} for each 1  i  k. f(Ci) = 1 if and only if Ci is 
an augmenting path relative to M. To complete the proof, we need 
only observe that 

 

     = |M’\M| - |M\M’| = |M’| - |M| = s - r. 

 

Thus, there are at least s - r components with f(Ci) = 1, and at least 
s - r node-disjoint augmenting paths relative to M. 

Ci contains one more edge from M’ or from M. 




k

j
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1

)(
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M D M’ 

… … … … 

C1 Ci 

If Ci is a cycle or an even path, f(Ci) = 0. 

If Ci is an augmenting path relative to M’, f(Ci) = -1. 

If Ci is an augmenting path relative to M, f(Ci) = 1.  




k

j
iCf

1

)( = s - r 

Ck 
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Properties of Matchings 

Combining Proposition 3.5 with Property 3.3, we can deduce the 
following theorem (Berge, 1957). 

Theorem 3.6 M is a maximum matching if and only if there is no 
augmenting path relative to M. 

Proof. If-part. If there is no augmenting path, M must be a 
maximum matching. Otherwise, let M’ be a maximum matching. 
According to Proposition 3.5, M D M’ contains at least |M’| - |M|  
node-disjoint augmenting paths relative to M. Contradiction. 

Only-if-part. If M is a maximum matching, there is definitely no 
augmenting path relative to M. Otherwise, let P be an augmenting 
path relative to M. Then, M D P is a larger matching than M.  
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Properties of Matchings 

The above theorem implies the following property. 

Property 3.7 If M is a matching of G, then there exists a maximum 
matching M of G such that the set of nodes covered by M is also 
covered by M. 

Proof. If M is a maximum matching, the property trivially holds. 
Otherwise, consider an augmenting path P relative to M. Then, 
according to Property 3.1, M D P is also a matching of G with 

 |M D P| = |M| + 1. 

Moreover, the nodes covered by M are also covered by M D P. 
Repeating the above process will prove the property. 
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Properties of Matchings 

The following theorem was obtained by Dulmage and Mendelsohn 
(1958). 

Theorem 3.8 Let G be a bipartite graph with bipartition (V1, V2). Let M1 

and M2 be matchings in G. Then, there is a matching M  M1  M2 such 

that M covers all the nodes of V1 covered by M1 and all the nodes of V2 

covered by M2. 

Proof. Let Ui be the nodes of V1 covered by Mi (i = 1, 2). Let Wi be the 

nodes of V2 covered by Mi (i = 1, 2). Let G1, G2, ..., Gk be the connected 

components of M1 D M2. By Property 3.4, each Gi (1  i  k) is an even 

cycle or a path. Let M1i = Gi  M1 and M2i = Gi  M2. Define in each Gi a 

matching pi: 
M1i 

M1i 

M2i 

if Gi is a cycle 

if there is a node v  V  (U1\U2) in Gi 

if there is a node v  V  (W2\W1) in Gi 

 

pi = 

Then, it is not difficult to check that M = (M1  M2)  p1  p2 ...  pk 

is the required matching. 
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v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M2: 
v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M1: 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 
M1 D M2: 

U1 = {v1, v3, v4} U2 = {v2, v3, v4, v5} 

W1 = {u1, u2, u3} W2 = {u1, u2, u3, u4} 

G1 

G2 

p1 = M11 = G1  M1 

p2 = M12 = G2  M1 

G3 
p3 = M23 = G3  M2 

M = (M1  M2)  p1  p2  p3 
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Properties of Matchings 

Theorem 3.9 A maximum matching M of a bipartite graph G can 

be obtained from any other maximum matching M’ by a sequence 

of transfers along alternating cycles and paths of even length. 

Proof. By Property 3.4, every component of M D M’ is an 

alternating even cycle or an alternating path relative to M’. By 

Property 3.3 and Theorem 3.6, a component of M D M’, if it is a 

path, must be of even length. (Otherwise, if it is an odd path, it 

must be an augmenting path relative to M or to M’, contradicting 

the fact that both M and M’ are maximum.) Then, changing M’ in 

each component in turn will transform M’ into M. 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M2: 
v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M1: 
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v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M2: 
v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 M1: 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 
M1 D M2: 

G1 

G2 
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Properties of Matchings 

A perfecting matching of a graph G is a matching which covers 

every node of G. Clearly, if a graph has two perfect matchings M 

and M’, all components of M D M’ are even cycles. Therefore, 

according to Theorem 3.9, we can deduce the following result. 

Corollary 3.10 Assume that bipartite graph G has a perfect 

matching M. Then, any other perfect matching can be obtained 

from M by a sequence of transfers along alternating cycles relative 

to M. 

v3 

u3 

v1 v2 

u1 u2 

v3 

u3 

v1 v2 

u1 u2 

v3 

u3 

v1 v2 

u1 u2 

M1: M2: 
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v4 

u4 

v1 v2 v3 

u1 u2 u3 

M’: 
v4 v1 v2 v3 

u1 u2 u3 

M: 

v4 v1 v2 v3 

u1 u2 u3 

M D M’: 

(a) (b) 

(c) 

Maximum, but not perfect matching 
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Algorithm 

 Algorithms - finding a maximum matching 

 Lemma 3.11 Let M be a matching with |M| = r and suppose that 

the cardinality of a maximum matching is s. Then, there exists 

an augmenting path relative to M of length at most 2r/(s – r)+ 

1. 

 Proof. Let M’ be a maximum matching. Then, by Proposition 

3.5, M D M’ contains s - r node-disjoint augmenting paths 

relative to M. It is easy to see that these paths contain at most r 

edges from M. So one of these augmenting paths must contain 

at most r/(s – r) edges from M and so at most 2 r/(s – r) + 1 

edges altogether. 
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 Proof. Let M’ be a maximum matching. Then, by Proposition 

3.5, M D M’ contains s - r node-disjoint augmenting paths 

relative to M. It is easy to see that these paths contain at most r 

edges from M. So one of these augmenting paths must contain 

at most r/(s – r) edges from M and so at most 2 r/(s – r) + 1 

edges altogether. 

Since s > r, there is at lease s – r augmenting paths in M D M’ . On 

each of them the number of edges in M’ is one larger than the 

number of edges in M. 

Consider these augmenting paths:  

P1 Pi 

… … … … 

If each Pi contains more than r/(s – r) edges, then M will have more 

than r edges. Contradiction.  

at least s – r augmenting paths 

relative to M 
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Algorithm 

Lemma 3.12 Let M be a matching and P be a shortest augmenting 

path relative to M. Let Q be an augmenting path relative to M D P. 

Then, |Q|  |P| + 2|P  Q|. 

Proof. Consider M’ = M D P D Q. Then, M’ is a matching. By 

Property 3.3, |M’| = |M D P| + 1 = (|M| + 1) + 1 = |M| + 2. 

According to Proposition 3.5, M D M’ contains at least two node-

disjoint augmenting paths relative to M. Let P1, ..., Pk (k  2) be 

such paths. Since P is a shortest augmenting path relative to M, we 

have 

   |M D M’| = |M D (M D P D Q) | = | D P D Q |  

 = |P D Q|  |P1| + ... + |Pk|  2|P|.  

Note that |P D Q| = |P| + |Q| - 2|P  Q|  2|P|. Therefore, we have 

|Q|  |P| + 2|P  Q|. 
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About symmetric difference 

Commutative: 

M D P= P D M  

  M P  

M 

Q P 

M D P D Q   

= M D (P D Q) 

= (M D P) D Q  

Associative: 
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Algorithm 

Corollary 3.13 Let P be a shortest augmenting path relative to a 

matching M, and Q be a shortest augmenting path relative to M D 

P. Then, if |P| = |Q|, the paths P and Q must be node-disjoint. 

Moreover, Q is also a shortest augmenting path relative to M. 

Proof. According to Lemma 3.12, we have |P| = |Q|  |P| + 2|P  
Q|. So P  Q = F. Thus, P and Q are edge-disjoint. Assume that P 
and Q share a common node v. Consider the edge e incident with v 
in M D P. Then, P and Q must share e, contradicting P  Q = F. 
Therefore, P and Q are also node-disjoint. 

P 

Q 

v 

e  M 

e   M D P 

e must be on Q since Q is an augmenting path of M D P.   

P 

Q 

P and Q are node-disjoint. 
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Algorithm 

Hopcroft-Karp algorithm (1973) 

The whole computation process is divided into a number of stages, 

at which some partial matching has been constructed and some way 

is sought to increase it. At stage i, we have the matching Mi and we 

search for {Q1, Q2, ..., Qk}, a maximal set of node-disjoint, shortest 

augmenting paths, relative to Mi. Then, according to Corollary 

3.13, Q2 is a shortest augmenting path relative to M D Q1, Q3 is a 

shortest augmenting path relative to (M D Q1)  D Q2, ..., and Qk is a 

shortest augmenting path relative to (M D Q1 D Q2 ... D Qk-2) D Qk-1. 

Therefore, the new matching for the next stage is formed as 

 

 Mi+1 = Mi D Q1 D Q2 ... D Qk. 



Yangjun Chen 28 

Algorithm 
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Algorithm 

Main process: 

G M1 G1 G1 
Node-disjoint augmenting 

paths P1 

M2 G2 G2 
Node-disjoint augmenting 

paths P2 

M3 G3 G3 
Node-disjoint augmenting 

paths P3 

M1 D P1 

M2 D P2 

M3 D P3 
…

 …
 

Randomly choose 

some edges as M1. 
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Algorithm 

Let Mi be the matching of G produced at stage i. We 
define a directed graph Gi (called an alternating graph) 
with the same node set as G, but with edge set 

 E(Gi) = {u  v | u  V1, v  V2, and (u, v)  E\Mi} 
     {v  u | u  V1, v  V2, and (u, v)  Mi}.  

 v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

(a) (b) 

(c) 

V1: 

V2: 

V1: 

V2: 
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Algorithm 

First step: 

From Gi, construct a subgraph Gi (called a layered 
graph)  described below. 

 Let L0 be the set of free nodes (relative to Mi) in V1 

and define Lj (j > 0) as follows: 

 Ej-1 = {u  v  E(Gi) | u  Lj-1, v  L0  L1  ...  Lj-1}, 

 Lj = {v  V(Gi) | for some u, u  v  Ej-1}. 

Define j* = min{j| Lj  {free nodes in V2}  Ф}. Gi is 
formed with V(Gi) and E(Gi) defined below. 

u4 u1 u2 u3 u5 u6 

V1: 

V2: 

v4 v1 v2 v3 v5 v6 

L0 

L1 
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Algorithm 

First step: 

If j* = 1, then  

 V(G1) = L0  (L1  {free nodes in V2}), 

 E(G1) = {u  v | u  L0 and v  {free nodes in V2}}. 

If j* > 1, then 

 V(Gi) = L0  L1  ...  Lj*-1  (Lj*  {free nodes in 
 V2}), 

 E(Gi) = E0  E1  ...  Ej*-2  {u  v | u  Lj*-1 and 
 v  {free nodes in V2}}. 

With this definition of the graph Gi, directed paths from 
L0 to Lj* are precisely in one-to-one correspondence with 
shortest augmenting paths relative to Mi in G. 
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Algorithm 

Second step: 

In this step, we will traverse Gi in a depth-first searching 
fashion to find a maximal set of node-disjoint paths from 
L0 to Lj*. 

• For this, a stack structure stack is used to control the 
graph exploring. 

• In addition, we use c-list(v) to represent the set of v’s 
child nodes. 
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Algorithm 
Algorithm finding-augmenting-paths(Gi) 

begin 

1. let x be the first element in L0; 

2. push(x, stack); mark v; 

3. while stack is not empty do { 

4.  v := top(stack); 

5.  while c-list(v)  Ф do { 

6.   let u be the first element in c-list(v); 

7.   if u is marked then remove u from c-list(v) 

8.   else {push(u, stack); mark u; v := u;} 

9.  } 

10.  if v is neither in Lj* nor in L0 then pop(stack) 

11.  else {if v is in Lj* then output all the elements in stack; 

    (*all the elements in stack make up an augmenting path.*) 

12.    remove all elements in stack; 

13.    let v be the next element in L0; 

14.    push(v, stack); mark v; 

15. } 

end 

v1 

u1 

v6 

u6 
v1 
u1 
v6 
u6 

v1 v5 

u1 u3 u5 

v6 v2 

u6 u2 

G2: 

v4 
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Example Trace 
Example. 

 v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

M1: 

G1: 

(a) 

(b) 

(c) 
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G1 will be constructed as follows: 

 

L0 = {v1, v4, v5} 

E0 = {(v1, u1), (v4, u4), (v4, u5), (v5, u3), (v5, u5)} 

L1 = {u1, u3, u4, u5} /*j* = 1 since u5 is free.*/ 

 

(If u5 is not free, the following layers will be 

constructed.) 

E1 = {(u1, v6), (u3, v2), (u4, v3)} 

L2 = {v6, v2, v3} 

E2 = {(v6, u6), (v3, u3), (v2, u2)} 

L3 = {u6, u2} 

/*u3 is not in L3 since it already appears in L1 . 

v1 v4 v5 

u1 u4 u5 

v6 v3 

u6 u3 

v2 

u2 

G1: 
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Example Trace 

Since L1 contains free node u5 in V2, j* = 1. 
Therefore, we have 

 V(G1) = {v1, v4, v5}  {u5}, and 

 E(G1) = {(v4, u5), (v5, u5)} 

Note that v4  u5 is an augmenting path relative 
to M1, and v5  u5 is another. By applying the 
second step of Hopcroft-Karp algorithm to G1, 
v4  u5 will be chosen, yielding a new matching 
M2 = M1 D {v4  u5} as shown in the following 
figure. 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

v1 v4 v5 

u5 

G1: 
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Example Trace 

At a next stage, we will construct G2 as shown in Figure 
7. G2 will then be constructed as follows: 

L0 = {v1, v5}, 

E0 = {(v1, u1), (v5, u3), (v5, u5)}, 

L1 = {u1, u3, u5}, 

E1 = {(u1, v6), (u3, v2), (u5, v4)}, 

L2 = {v2, v4, v6}, 

E2 = {(v2, u2), (v4, u4), (v6, u6)}, 

L3 = {u2, u4, u6},  

/*j* = 3 since u2 and u6 are free.*/ 

 

 

 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

G2: 

v1 v5 

u1 u3 u5 

v6 v2 

u6 u2 

G2: 

v4 E3 = {(u4, v3)}, 
L4 = {v3}, 
E4 = {(v3, u3)}. 

This part will not 

be  created. 
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L0 = {v1, v5}, 

E0 = {(v1, u1), (v5, u3), (v5, u5)}, 

L1 = {u1, u3, u5}, 

E1 = {(u1, v6), (u3, v2), (u5, v4)}, 

L2 = {v2, v4, v6}, 

E2 = {(v2, u2), (v6, u6) , (v4, u4)}, 

L3 = {u2, u6 , u4}.  

/*j* = 3 since u2 and u6 are free.*/  

v1 v5 

u1 u3 u5 

v6 v2 

u6 u2 

G2: 

v4 

Since L3 contains two free nodes u2 and u6 in V2, j* = 3. 
So we have 

 V(G2’) = L0  L1 L2  {u2, u6}, and 

 E(G2’) = E0  E1 {(v2, u2), (v6, u6)}. 
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Example Trace 

Since L3 contains two free nodes u2 and u6 in V2, j* = 3. 
So we have 

 V(G2’) = L0  L1 L2  {u2, u6}, and 

 E(G2’) = E0  E1 {(v2, u2), (v6, u6)}. 

In Fig. 8, we show G2’, which contains two augmenting 
paths P1 and P2, where P1 = v1  u1  v6  u6 
(represented by red edges in Fig. 8) and P2 = v5  u3  v2 
 u2 (represented by blue edges in Fig. 8) .  

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 
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Example Trace 

In Fig. 8, we show G2, which contains two augmenting 
paths P1 and P2, where P1 = v1  u1  v6  u6 and P2 = 
v5  u3  v2  u2. By applying the second step of 
Hopcroft-Karp algorithm, these two augmenting paths 
will be found. The maximum matching M3 = M2 D P1 D 
P2 is shown in Fig. 9. 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

v1 v5 

u1 u3 u5 

v6 v2 

u6 u2 

G2: 

v4 

P1 P2 
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Example Trace 

In order to have a better understanding of the second step 
of Hopcroft-Karp algorithm, we trace the execution steps 
when applying it to the graph shown in Figure 8. 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

Step 1: 

 

Step 2: 

 

Step 3: 

L0 = {v1, v5} 

push(v1, stack); mark v1; 

c-List(v1) = {u1} 

push(u1, stack); mark u1; 

c-List(u1) = {v6} 

push(v6, stack); mark v6; 

v1 

u1 
v1 

v6 
u1 
v1 

v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

M3: G2: 

v1 v5 

u1 u3 u5 

v6 v2 

u6 u2 

G2: 

v4 
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v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

Step 4: 

 

Step 5: 

c-List(v6) = {u6}; 

push(u6, stack); mark u6; 

c-List(u6) = ; 

u6 is in L3; /* j* = 3.*/; 

Output all the nodes in stack, 

which make up an augmenting 

path: 

v1  u1  v6  u6 ; 

empty stack; 

push(v5, stack); mark v5; 

/* v5 is the next element in L0.*/ 

v5 

u6 
v6 
u1 
v1 

L3 = {u2, u4, u6} 

L0 = {v1, v5} 

u6 is a free 

node. 
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v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

Step 6: 

 

Step 7: 

 

 

Step 8: 

c-List(v5) = {u5, u3}; 

push(u5, stack); mark u5; 

c-List(u5) = {v4}; 

push(v4, stack); mark v4; 

 

c-List(v4) = ; 

v4 is neither in L3 nor in L0;  

/*j* = 3. */ 

pop(stack); 

u5 
v5 

v4 
u5 
v5 

u5 
v5 

L3 = {u2, u4, u6} 

L0 = {v1, v5} 
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v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

Step 9: 

 

 

Step 10: 

 

 

Step 11: 

c-List(u5) = {v4}; 

v4 is marked; remove v4 from the list;  

c-List(u5) = ; 

u5 is neither in L3 nor in L0; 

pop(stack); 

c-List(v5) = {u3}; /* u5 is removed from c-List(v5).*/ 

push(u3, stack); mark u3; 

c-List(u3) = {v2}; 

push(v2, stack); mark v2; 

u3 
v5 

v2 
u3 
v5 

v5 

L3 = {u2, u4, u6} 

L0 = {v1, v5} 
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v4 

u4 

v1 v2 v3 

u1 u2 u3 

v5 v6 

u5 u6 

Step 12: 

 

Step 13: 

c-List(v2) = {u2}; 

push(u2, stack); mark u2; 

c-List(u2) = ; 

u2 is in L3; /* j* = 3. */; 

Output all the nodes in stack, which 

make up an augmenting path: 

v5  u3  v2  u2; 

empty stack; 

Now stack is empty and no element 

in L0 will be pushed into stack. 

Stop. 

u2 
v2 
u3 
v5 

L3 = {u2, u4, u6} 

L0 = {v1, v5} 
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Bipartite Graph 

Hopcroft-Karp algorithm (1973) 

In the above example, we choose the matching shown in Figure 

5(b) as an initial matching for ease of explanation. In fact, we can 

choose any edge in the bipartite graph as an initial matching and 

then apply Hopcroft-Karp algorithm. Of course, the final matching 

found may be different from that shown in Figure 9. 
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Project Requirement 

1. Implementation of the algorithm in C++. 

2. Documentation. 


