
Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 1

Outline: Reachability Query Evaluation

• What is reachability query?

• Reachability query evaluation based on matrix

multiplication

• Strassen’s algorithm (for matrix multiplication)

• Warren’s algorithm (for generating transitive closures)

• Reachability based on tree encoding

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 2

Motivation

• Efficient method to evaluate graph reachability queries

 Given a directed graph G, check whether a node v is

reachable from another node u through a path in G.

• Application

 - XML data processing

 - Type checking in object-oriented languages and databases

 - Geographical data navigation

 - Internet routing

 - Social network

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 3

A simple method

 - store a transitive closure as a matrix

c b

a

d e

G:

c b

a

d e

G*:

M =

a
b
c
d
e

a b c d e

0
0
0
0
0

1
0
0
0
0

1
0
1
0
0

0
0
1
0
0

1
0
0
0
0

The transitive closure G* of a graph G is a

graph such that there is an edge (u, v) in G*

iff there is path from u to v in G.

M* =

a
b
c
d
e

a b c d e

0
0
0
0
0

1
0
0
0
0

1
0
1
0
0

1
0
1
0
0

1
0
0
0
0

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 4

• Definition

 - Two matrices A and B are compatible if the number of columns of A

 equals the number of B.

 - If A = (aij) is an m  n matrix and B = (bij) is an n  p matrix, then

 their matrix product C = A  B is an m  p matrix C = (cik) such that

 cik = aijbjk 
j=1

n

for i = 1, 2, …, m and k = 1, 2, …, p.

M  M =

a
b
c
d
e

a b c d e

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

1
0
0
0
0

0
0
0
0
0

Each entry (i, j) in M  M represents

a path of length 2 from i to j.

Matrix Multiplication

c b

a

d e

G:

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 5

Time overhead: O(n4).
Space overhead: O(n2).
Query time: O(1).

Each entry (i, j) in M  M represents a path of length 2 from i to j.

Each entry (i, j) in M  M  M represents a path of length 3 from

i to j.

Each entry (i, j) in M  M  M …  M represents a path of length k

from i to j.

M* = M(1)  M(2)  M(3)  …  M(n)
Define:

Each entry (i, j) in M* represents a path from i to j.

.

.

.
k

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 6

Example

c b

a

d e

G:

c b

a

d e

G*:

M =

a
b
c
d
e

a b c d e

0
0
0
0
0

1
0
0
0
0

1
0
1
0
0

0
0
1
0
0

1
0
0
0
0

M* = M  (M  M) =

Each entry (i, j) in P represents a path from i to j.

a
b
c
d
e

a b c d e

0
0
0
0
0

1
0
0
0
0

1
0
1
0
0

1
0
1
0
0

1
0
0
0
0

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 7

Strassen’s algorithm runs in O(nlg7) = O(n2.81) time. For sufficiently

large values of n, it outperforms Warren’s algorithm.

Strassen’s Algorithm

• An overview of the algorithm

 Strassen’s algorithm can be viewed as an application of a familiar

design technique: divide and conquer. Consider the computation

C = A  B, where A, B, and C are n  n matrices. Assuming that n is

an exact power of 2, we divide each of A, B, and C into four

n/2  n/2 matrices, rewriting the equation C = A  B as follows:

r

t

s

u

a

c

b

d

e

g

f

h
= 

r = ae + bg

s = af + bh

t = ce + dg

u = af + dh

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 8

Each of these four equations specifies two multiplications of

n/2  n/2 matrices and the addition of their n/2  n/2 products.

So the time complexity of the algorithm satisfies the following

recursive equation:

T(n) = 8T(n/2) + O(n2)

The solution of this equation is T(n) = O(n3).

Strassen discovered a different approach that requires only 7 recursive

multiplications of n/2  n/2 matrices and O(n2) scalar additions and

subtractions, yielding the recurrence:

T(n) = 7T(n/2) + O(n2)

= O(nlg7)

= O(n2.81).

r

t

s

u

a

c

b

d

e

g

f

h
= 

Reachability Queries

Jan. 2023

Strassen’s algorithm works in four steps:

1. Divide the input matrices A and B into n/2  n/2 matrices.

A1 = a,

A2 = (a + b),

A3 = (c + d),

A4 = d,

A5 = (a + d),

A6 = (b – d),

A7 = (c – a)

B1 = (f – h),

B2 = h,

B3 = e,

B4 = (g – d),

B5 = (e + h),

B6 = (g + h),

B7 = (e + f)

e

g

f

h
B =

a

c

b

d
A =

2. Using O(n2) scalar additions and subtractions, compute 14

 matrices A1, B1, A2, B2, …, A7, B7, each of which is n/2  n/2.

Yangjun Chen ACS-7102 9

Reachability Queries

Jan. 2023

r = ae + bg = P5 + P4 - P2 + P6,

s = af + bh = P1 + P2,

t = ce + dg = P3 + P4,

u = af + dh = P5 + P1 – P3 + P7.

3. Recursively compute the seven matrix products

 Pi = Ai  Bi for i = 1, 2, …, 7.

4. Compute the desired submatrices r, s, t, u of the result matrix

 C by adding and/or subtracting various combinations of the Pi

 matrices, using only O(n2) scalar additions and subtraction.

r

t

s

u

a

c

b

d

e

g

f

h
= 

Altogether 7 matrix multiplication,

18 matrix additions and subtractions.

Strassen’s algorithm works in four steps:

Yangjun Chen ACS-7102 10

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 11

Assume that n = 2m. We have

T(2m) = 7T(2m-1) + 18(2m-1)2.

Am = 7Am-1 + 18(2m-1)2, A1 = 18.

G(x) = A1 + A2x + A3x
2 + …

= A1 + (7A1 + 1822)x

+ (7A2 + 1823)x2
… …

= 8 + 7x (A1 + A2x + A3x
2 + …) + 184x/(1 – 4x)

= 8 + 7x G(x) + 184x/(1 – 4x)

(1 - 7x)G(x) = 18(4x/(1 – 4x) + 1) = 18/(1 – 4x)

Generating

function

T(n) = 7T(n/2) + O(n2)

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 12

(1 - 7x)G(x) = 18(4x/(1 – 4x) + 1) = 18/(1 – 4x)

G(x) = 18/(1 – 4x)(1 – 7x) = 18
-4/3

1 – 4x
(+

7/3

1 – 7x
)

G(x) = 6 (7k+1 – 4k+1)xk 
k=0



Am = 6(7m – 4m), m = log2n

= O(67) log2n

= O(6n) log27

= O(n2.81)

= A1 + A2x + A3x
2 + …

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 13

• Determining the submatrix products

 It is not clear exactly how Strassen discovered the submatrix

products that are the key to making his algorithm work. Here,

we reconstruct one plausible discovery method.

Write Pi = Ai  Bi

 = (i1a + i2b + i3c + i4d) (i2e + i1f + i3g + i4h),

where the coefficients ij, ij are all drawn from the set {-1, 0, 1}.

We guess that each product is computed by adding or subtracting

some of the submatrices of A, adding or subtracting some of

submatrices of B, and then multiplying the two results together.

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 14

Pi = Ai  Bi = (i1a + i2b + i3c + i4d) (i1e + i2f + i3g + i4h)

= (a b c d) (i1 i2 i3 i4)

i1

i2

i3

i4

e

f

g

h

= (a b c d)

i1i1 i1i2 i1i3 i1i4

i2i1 i2i2 i2i3 i2i4

i3i1 i3i2 i3i3 i3i4

i4 i1 i4i2 i4i3 i4i4

e

f

g

h

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 15

r

t

s

u

a

c

b

d

e

g

f

h
= 

r = ae + bg

s = af + bh

t = ce + dg

u = af + dh

r = ae + bg

= (a b c d)

e

f

g

h

+1 0 0 0

0 0 +1 0

0 0 0 0

0 0 0 0

So r is represented by a matrix:

+   

  + 

   

   

‘’ – represents 0.

‘+’ – represents +1.

‘-’ – represents -1.

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 16

s = af + bh

=

 +  

   +

   

   

t = ce + dg

=

   

   

+   

  + 

s = cf + dh

=

   

   

 +  

   +

We will create 7 matrices in such a way that the above 4 matrices can

be generated by addition and subtraction operations over these 7

matrices. Furthermore, the 7 matrices themselves can be produced by

7 multiplications and some additions and subtractions.

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 17

P1 = A1B1 = a·(f – h) = af - ah

=

 +  -

   

   

   

s = af + bh

=

 +  

   +

   

   

P2 = A2B2 = (a + b) h = ah + bh

=

   +

   +

   

   

= P1 + P2

A1 = a,

A2 = (a + b),

A3 = (c + d),

A4 = d,

A5 = (a + d),

A6 = (b – d),

A7 = (c – a)

B1 = (f – h),

B2 = h,

B3 = e,

B4 = (g – d),

B5 = (e + h),

B6 = (g + h),

B7 = (e + f)

Reachability Queries

Jan. 2023

P1 = A1B1 = a·(f – h) = af - ah

= (a b c d)

 +  -

   

   

   

e

f

g

h

Yangjun Chen ACS-7102 18

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 19

P3 = A3B3 = (c + d) e = ce + de

=

   

   

+   

+   

t = ce + dg

=

   

   

+   

  + 

P4 = A4B4 = d (g - e) = dg - de

=

   

   

   

-  + 

= P3 + P4

A1 = a,

A2 = (a + b),

A3 = (c + d),

A4 = d,

A5 = (a + d),

A6 = (b – d),

A7 = (c – a)

B1 = (f – h),

B2 = h,

B3 = e,

B4 = (g – d),

B5 = (e + h),

B6 = (g + h),

B7 = (e + f)

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 20

P5 = A5B5 = (a + d) (e + h)

= ae + ah + de + dh

=

+   +

   

   

+   +

r = ae + bg

=

+   

  + 

   

   

P6 = A6B6 = (b – d) (g + h)

= bg + bh – dg - dh

=

   

  + +

   

  - -

= P5 + P4 – P2 + P6

A1 = a,

A2 = (a + b),

A3 = (c + d),

A4 = d,

A5 = (a + d),

A6 = (b – d),

A7 = (c – a)

B1 = (f – h),

B2 = h,

B3 = e,

B4 = (g – d),

B5 = (e + h),

B6 = (g + h),

B7 = (e + f)

Reachability Queries

Jan. 2023

P5 + P4 =

+   +

   

   

  + +

P5 + P4 - P2 =

+   .

   -

   

  + +

P5 + P4 - P2 + P6 =

+   

  + 

   

   

Yangjun Chen ACS-7102 21

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 22

P7 = A7B7 = (a - c) (e + f)

= ae + af - ce - cf

=

+ +  

   

- -  

   

u = cf + dh

=

   

   

 +  

   +

= P5 + P1 – P3 – P7

A1 = a,

A2 = (a + b),

A3 = (c + d),

A4 = d,

A5 = (a + d),

A6 = (b – d),

A7 = (c – a)

B1 = (f – h),

B2 = h,

B3 = e,

B4 = (g – d),

B5 = (e + h),

B6 = (g + h),

B7 = (e + f)

Reachability Queries

Jan. 2023

Warren’s Algorithm
 Warren’s algorithm is a quite simple way to generate a boolean matrix to

represent the transitive closure of a graph G. Assume that G is represented by a

boolean matrix M in which M(i, j) = 1 if edge (i, j) is in G, and M(i, j) = 0 if

(i, j) is not in G. Then, the matrix M’ for the transitive closure of G can be

computed from M, in which M’(i, j) = 1 if there exits a path from i to j in G, and

M’(i, j) = 0 if there is no path from i to j in G. Warren’s algorithm is given below:

Algorithm Warren

for i = 2 to n do

 for j = 1 to i - 1 do

 {if M(i, j) = 1 then set M(i, *) = M(i, *)  M(j, *);}

for i = 1 to n - 1 do

 for j = i + 1 to n do

 {if M(i, j) = 1 then set M(i, *) = M(i, *)  M(j, *);}

In the algorithm, M(i, *) denotes row i of M.

The theoretic time complexity of Warren’s algorithm is O(n3).

. . . .

 . . .

. . . .

 . . .

Yangjun Chen ACS-7102 23

Reachability Queries

Jan. 2023

if M(i, j) = 1 then set M(i, *) = M(i, *)  M(j, *)

i

j

k x

i

j

k
x

S. Warshall, “A Theorem on Boolean Matrices,” JACM, 9. 1(Jan. 1962), 11 - 12.

H.S. Warren, “A Modification of Warshall’s Algorithm for the Transitive Closure of

Binary Relations,” Commun. ACM 18, 4 (April 1975), 218 - 220.

i

j

k
x

i

j

k
x

if M(i, k) = 1 then set M(i, *) = M(i, *)  M(k, *)

Yangjun Chen ACS-7102 24

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 25

• Definition

 - We can assign each node v in a tree T an interval [v, v),

 where v is v’s preorder number (denoted pre(v)) and v - 1

 is equal to the largest preorder number among all the nodes

 in T[v] (subtree rooted at v).

 - So another node u labeled [u, u) is a descendant of v (with

 respect to T) iff u  [v, v).

 - If u  [v, v), we say, [u, u) is subsumed by [v, v).

 This method is called the tree labeling.

First kind of tree encoding

H. Wang, H. He, J. Yang, P.S. Yu, and J. X. Yu, Dual Labeling: Answering

Graph Reachability Queries in Constant time, in Proc. of Int. Conf. on Data

Engineering, Atlanta, USA, April -8 2006.

Reachability Queries

[5, 6) d

Jan. 2023 Yangjun Chen ACS-7102 26

Example:

a

b r h

e

f g

i j

[0, 13)

[1, 6)

[2, 5)

[4, 5)
[8, 9) [9, 10)

[6, 10) [10, 13)

[7, 10)

[11, 12) [12, 13)

c

k

p [3, 5)

For a directed graph, the intervals cannot be used to

check reachability. The containment is just a sufficient

condition, not a necessary condition.

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 27

Directed acyclic graphs (DAGs)

 - Find a spanning tree T of G(V, E), and assign each node v

 an interval.

 - Examine all the nodes in G in a reverse topological order

 and do the following:

 For every edge (v, u), add all the intervals associated with

 the node u to the intervals associated with the node v.

Reachability checking based on tree encoding

Topological order of a directed acyclic graph:

Linear ordering of the vertices of G such that if (u, v)  E, then

u appears somewhere before v.

Reachability Queries

Jan. 2023

a

b

d

r
h

e

f

g

i

j

[0, 13)

[1, 6)

[2, 5)

[4, 5)

[5, 6)

[8, 9)
[9, 10)

[6, 10) [10, 13)

[7, 10)
[11, 12) [12, 13)

c

k

p [3, 5)

Example:

Topological order of a directed acyclic graph:

Linear ordering of the vertices of G such that if (u, v)  E, then

u appears somewhere before v.

Topological order: a, b, r, h, e, f, g, d, c, p, k, i, j

Yangjun Chen ACS-7102 28

Reachability Queries

Jan. 2023

When we navigate along a topological order, for

every edge (v, u), add all the intervals associated

with the node u to the intervals associated with the

node v.

1. When adding an interval [i, j) to the interval sequence

 associated with a node, if an interval [i’, j’) is subsumed

 by [i, j), it will be discarded from the sequence. In other

 words: if i’  [i, j), then discard [i’, j’).

2. On the other hand, if an interval [i’, j’) is equal to [i, j) or

 subsumes [i, j). [i, j) will not be added to the sequence.

 Otherwise, [i, j) will be inserted.

Yangjun Chen ACS-7102 29

Reachability Queries

h

Jan. 2023 Yangjun Chen ACS-7102 30

Reverse topological order:

A sequence of the nodes of G such that for any edge (u,

v) v appears before u in the sequence.

k, p, c, d, f, g, i, j, e, r, b, h, a

L(k) = [4, 5)

L(p) = [3, 5)

L(c) = [2, 5)

L(d) = [4, 5)[5, 6)

L(f) = [4, 5)[5, 6)[8, 9)

L(g) = [2, 5)[5, 6)[9, 10)

L(i) = [11, 12)

L(j) = [12, 13)

L(e) = [2, 5)[5, 6)[7, 10)

L(r) = [2, 5)[5, 6)[6, 10)

L(b) = [1, 6)

L(h) = [2, 5)[5, 6)[7, 10)[10, 13)

L(a) = [10, 13)

Reverse topological order

a

b

d

r

e

f

g

i

j

[0, 13)

[1, 6)

[2, 5)

[4, 5)

[5, 6)

[8, 9)

[9, 10)

[6, 10)
[10, 13)

[7, 10)

[11, 12) [12, 13)

c

k

p [3, 5)

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 31

Generation of interval sequences

• Create interval sequences for all the nodes along the reverse

 topological order

• First of all, we notice that each leaf node is exactly associated

 with one interval, which is trivially sorted according to the

 first element in each interval.

• Let v1, ..., vl be the child nodes of v, associated with the interval

 sequences L1, ..., Ll, respectively.

• Assume that the intervals in each Li are sorted. We will merge

 all Li’s into the interval sequence L associated with v as follows.

- Let [a1, b1) (from L) and [a2, b2) (from Li) be the interval

 encountered. We will perform the following checkings:

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 32

- If a2 >= a1 then

 {if a2  [a1, b1) then go to the interval next to [a2, b2) and

 compare it with [a1, b1) in a next step

 else go to the interval next to [a1, b1) and compare it

 with [a2, b2) in a next step.}

- If a1 > a2 then

 {if a1  [a2, b2) then remove [a1, b1) from L and compare

 the interval next to [a1, b1) with [a2, b2) in

 a next step.

 else insert [a2, b2) into L before [a1, b1).}

L = … [a1, b1) [a1’, b1’) …

Li = … [a2, b2) [a2’, b2’) …

- Let [a1, b1) (from L) and [a2, b2) (from Li) be the interval

 encountered. We will perform the following checkings:

Reachability Queries

e

Jan. 2023

Generation of the interval sequence for node e:

Initially, L(e)= [7, 10).

First, merge L(e) = [7, 10) with L(f) = [4, 5)[5, 6)[8, 9).

L(e) = [7, 10)

L(f) = [4, 5)[5, 6)[8, 9)

p

q

[4, 5)[7, 10)

[4, 5)[5, 6)[8, 9)

p

q

[4, 5)[5, 6)[7, 10)

[4, 5)[5, 6)[8, 9)

p

q

[4, 5)[5, 6)[7, 10)

[4, 5)[5, 6)[8, 9)

p

q
Yangjun Chen ACS-7102 33

p, q are pointer variables used to scan

L(e) and L(f), respectively.

f

g

Reachability Queries

Jan. 2023

Secondly, merge L’(e) = [4, 5)[5, 6)[7, 10) with

L(g) = [2, 5)[5, 6)[9, 10).

L’(e) = [4, 5)[5, 6)[7, 10)

L(g) = [2, 5)[5, 6)[9, 10)

p

q

L’(e) = [5, 6)[7, 10)

L(g) = [2, 5)[5, 6)[9, 10).

p

q

p

L’(e) = [2, 5)[5, 6)[7, 10)

L(g) = [2, 5)[5, 6)[9, 10)

q

L’(e) = [4, 5)[5, 6)[7, 10)

L(g) = [2, 5)[5, 6)[9, 10)

p

q
Yangjun Chen ACS-7102 34

Reachability Queries

Jan. 2023

Secondly, merge L’(e) = [4, 5)[5, 6)[7, 10) with

L(g) = [2, 5)[5, 6)[9, 10).

p

L’(e) = [2, 5)[5, 6)[7, 10)

L(g) = [2, 5)[5, 6)[9, 10)

q

L’(e) = [2, 5)[5, 6)[7, 10)

L(g) = [2, 5)[5, 6)[9, 10)

p

q

Yangjun Chen ACS-7102 35

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 36

The size of the data structure is bounded by O(bn).

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 37

Reachability checking for DAGs

- Let u and v be two nodes of G.

- u is a descendant of v iff there exists an

interval [, ) in L(v) such that u  [, ).

Example:

[k, k) = [4, 5)

L(r) = [2, 5)[5, 6)[6, 10)

Node k is a descendant

of node r.

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 38

Reachability checking for cyclic graphs

- Using the Tarjan’s algorithm to recognize all the

strongly connected components (SCCs). In each SCC,

any two nodes are reachable from each other.

- Collapse each SCC to a single node. In this way, any

cyclic graph G is transformed to a DAG G’.

- Let u and v be to two nodes in G. Check their

reachability according to two cases:

• u and v are in the same SCC.

• u and v are in two different SCC.

R. Tarjan: Depth-first Search and Linear Graph Algorithms,

SIAM J. Compt. Vol. 1. No. 2. June 1972, pp. 146-140.

Reachability Queries

Jan. 2023

a

b

c

d

f
e

g

a

bcde f

g

Yangjun Chen ACS-7102 39

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 40

Second kind of tree encoding: Using tree

encoding as a filter

• Each node v in a tree T is labeled with a with a range: Iv = [rx, rv],

 where rv is the postorder number of v (the postorder numbers are

assumed to begin at 1) and rx is the lowest postorder number of

any node x in the subtree T[v] rooted at v (also, including v).

• This approach guarantees that the containment between intervals is

equivalent to the reachability relationship between the nodes, since

the postorder traversal enters a node before all of its descendants

have been visited. In other words,

 u↝ v  Iv  Iu.

H. Yildirim, V. Chaoji, and M. J. Zaki, “GRAIL: Scalable reachabil1473 ity index for

llarge graphs,” in Proc. VLDB Endowment, vol. 3, no. 1, 1474 pp. 276–284, 2010.

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 41

Example:

The above figure shows the interval labeling on a tree, assuming that

the children are ordered from left to right. It is easy to see that

reachability can be answered by interval containment. For example,

1 ↝ 9, since I9 = [2, 2] ⊂ [1, 6] = I1, but 2 ↝ 7, since I7 = [1, 3]

 [7, 9] = I2.

[1,10]
0

1 2

3 4 5

6 7

8 9

[1,6] [7,9]

[7,8]

[1,3]

[2,2]

[1,4]

[7,7]

[5,5]

[1,1]

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 42

Using tree encoding as a filter

 To generalize the interval labeling to a DAG G, we have to

ensure that a node is not visited more than once during a

bottom-up search of G, and a node will keep the postorder

number rv of its first visit. Its rx is now the lowest postorder

number in the sub-graph rooted at v.

[1,10]
0

1 2

3 4 5

6 7

8 9

[1,6] [1,9]

[1,8]

[1,3]

[2,2]

[1,4]

[1,7]

[1,5]

[1,1]

[1,10]
0

1 2

3 4 5

6 7

8 9

[1,6] [7,9]

[7,8]

[1,3]

[2,2]

[1,4]

[7,7]

[5,5]

[1,1]

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 43

For example, 5↝ 4, but I4 = [1, 5] ⊆ [1, 8] = I5. In other words,

Iv ⊆ Iu does not imply that u↝ v. On the other hand, one can show

that Iv  Iu ⇒ u↝ v. (So the containment is a necessary condition,

not a sufficient condition.)

[1,10]

0

1 2

3 4 5

6 7

8 9

[1,6] [1,9]

[1,8]

[1,3]

[2,2]

[1,4]

[1,7]

[1,5]

[1,1]

The above shows an interval labeling on a DAG, assuming a left to

right ordering of the children. As one can see, interval containment

of nodes in a DAG is not exactly equivalent to reachability.

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 44

• Instead of using a single interval, one can employs multiple intervals

 that are obtained via random graph traversals.

• We use the symbol d to denote the number of intervals to keep per

 node, which also corresponds to the number of graph traversals used

 to obtain the label.

• The following figure shows a DAG labeling using 2 intervals

 (the first interval assumes a left-to-right ordering of the children,

 whereas the second interval assumes a right-to-left ordering).
[1,10], [1, 10]

0

1 2

3 4 5

6 7

8 9

[1,6], [1, 9] [1,9], [1, 7]

[1,8], [1, 3]

[1,3], [1, 5]

[2,2], [4, 4]

[1,4], [1, 6]

[1,7], [1, 2]

[1,5], [1, 8]

[1,1], [1, 1]

[1, 10]
0

1 2

3 4 5

6 7

8 9

[1, 9] [1, 7]

[1, 3]

[1, 5]

[4, 4]

[1, 6]

[1, 2]

[1, 8]

[1, 1]

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 45

Index construction
An interval Iu

i is denoted as

 Iu
i = [Iu

i[1], Iu
i[2]] = [rx, ru]

Algorithm 1: Randomized Intervals

 RandomizedLabeling(G, d):

1 foreach i ← 1 to d do (*d – number of intervals for each node*)

2 r ← 1 // global variable: postorder number of node

3 Roots ← {n : n ∈ roots(G)}

4 foreach x ∈ Roots in random order do

5 Call RandomizedVisit(x, i, G)

 RandomizedVisit(x, i, G) :

6 if x visited before then return

7 foreach y ∈ Children(x) in random order do

8 Call RandomizedVisit(y, i, G)

9 rc* ← min{Ic
i[1] : c ∈ Children(x)}

10 Ix
i ← [min(r, rc*), r] (*Compute [Ix

i[1], Ix
i[2]].*)

11 r ← r + 1

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 46

Reachability queries

• Assume that each node is associated with an single interval.

• To answer reachability queries between two nodes, u and v,

 we will first check whether Iv  Iu. If so, we can immediately

 conclude that u ↝ v.

• On the other hand, if Iv ⊆ Iu, nothing can be concluded

 immediately since we know that the index can have false positives,

 i.e., exceptions. In this case, a DFS (depth-first search) is

 conducted, with recursive containment check based pruning,

 to answer queries. In the worst case, it needs O(n) time.

• Another way is to check the exception lists associated with the

 nodes:

Ex = {y : (x, y) is an exception, i.e., Iy ⊆ Ix and x ↝ y}.

Reachability Queries

Jan. 2023

[1,10]
0

1 2

3 4 5

6 7

8 9

[1,6] [1,9]

[1,8]

[1,3]

[2,2]

[1,4]

[1,7]

[1,5]

[1,1]

Exception lists:

E2 = {1, 4}

E4 = {3, 7, 9}

E5 = {1, 3, 4, 7, 9}

E6 = {1, 3, 4, 7, 9}

Yangjun Chen ACS-7102 47

Reachability Queries

Jan. 2023 Yangjun Chen ACS-7102 48

DFS with prunning

Algorithm 2: Reachability Testing (*for the case of only one interval*)

Reachable(u, v, G):

1 if Iv  Iu then

2 return False (* u ↝ v *)

3 else if use exception lists then

4 if v ∈ Eu then return False (* u ↝ v *)

5 else return True (* u ↝ v *)

6 else (*No exception list. DFS with pruning using intervals.*)

7 foreach c  Children(u) such that Iv ⊆ Ic do

8 if Reachable(c, v, G) then

9 return True (* u ↝ v *)

10 return False (* u ↝ v *)

