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Outline: Reachability Query Evaluation 

• What is reachability query? 

• Reachability query evaluation based on matrix 

multiplication 

• Strassen’s algorithm (for matrix multiplication) 

• Warren’s algorithm (for generating transitive closures) 

• Reachability based on tree encoding 
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Motivation 

• Efficient method to evaluate graph reachability queries 

 Given a directed graph G, check whether a node v is 

reachable from another node u through a path in G. 

• Application 

 - XML data processing 

 - Type checking in object-oriented languages and databases 

 - Geographical data navigation 

 - Internet routing 

  - Social network 
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A simple method 

 - store a transitive closure as a matrix 
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The transitive closure G* of a graph G is a 

graph such that there is an edge (u, v) in G* 

iff there is path from u to v in G.   
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• Definition 

 - Two matrices A and B are compatible if the number of columns of A 

 equals the number of B. 

 - If A = (aij) is an m  n matrix and B = (bij) is an n  p matrix, then 

 their matrix product C = A  B is an m  p matrix C = (cik) such that 

   cik =    aijbjk   
j=1 

n 

for i = 1, 2, …, m and k = 1, 2, …, p. 

M  M =  

a 
b 
c 
d 
e 

a b c d e 

0 
0 
0 
0 
0 

0 
0 
0 
0 
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Each entry (i, j) in M  M represents  

a path of length 2 from i to j. 

Matrix Multiplication 

c b 

a 

d e 

G: 
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Time overhead: O(n4). 
Space overhead: O(n2). 
Query time: O(1). 

Each entry (i, j) in M  M represents a path of length 2 from i to j. 
 

Each entry (i, j) in M  M  M represents a path of length 3 from 

i to j. 

 
Each entry (i, j) in M  M  M …  M represents a path of length k 

from i to j. 

M* = M(1)  M(2)  M(3)  …  M(n)  
Define: 

Each entry (i, j) in M* represents a path from i to j. 

. 

. 

. 
k 
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Example 

c b 

a 

d e 

G: 

c b 

a 

d e 

G*: 

M =  

a 
b 
c 
d 
e 
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M* = M  (M  M) = 

Each entry (i, j) in P represents a path from i to j. 

a 
b 
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e 

a b c d e 
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Strassen’s algorithm runs in O(nlg7) = O(n2.81) time. For sufficiently 

large values of n, it outperforms Warren’s algorithm. 

Strassen’s Algorithm 
 

• An overview of the algorithm 

  Strassen’s algorithm can be viewed as an application of a familiar 

design technique: divide and conquer. Consider the computation 

C = A  B, where A, B, and C are n  n matrices. Assuming that n is 

an exact power of 2, we divide each of A, B, and C into four 

n/2  n/2 matrices, rewriting the equation C = A  B as follows:  

r 

t 

s 

u 

a 

c 

b 

d 

e 

g 

f 

h 
=  

r = ae + bg 

s = af + bh 

t = ce + dg 

u = af + dh 
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Each of these four equations specifies two multiplications of 

n/2  n/2 matrices and the addition of their n/2  n/2 products. 

So the time complexity of the algorithm satisfies the following 

recursive equation: 

T(n) = 8T(n/2) + O(n2) 

The solution of this equation is T(n) = O(n3). 

Strassen discovered a different approach that requires only 7 recursive 

multiplications of n/2  n/2 matrices and O(n2) scalar additions and 

subtractions, yielding the recurrence: 

T(n) = 7T(n/2) + O(n2) 

= O(nlg7) 

= O(n2.81). 

r 

t 

s 

u 

a 

c 

b 

d 

e 

g 

f 

h 
=  



Reachability Queries 

Jan. 2023 

Strassen’s algorithm works in four steps: 

1. Divide the input matrices A and B into n/2  n/2 matrices. 

A1 = a, 

A2 = (a + b), 

A3 = (c + d), 

A4 = d, 

A5 = (a + d), 

A6 = (b – d), 

A7 = (c – a)  

B1 = (f – h), 

B2 = h, 

B3 = e, 

B4 = (g – d), 

B5 = (e + h), 

B6 = (g + h), 

B7 = (e + f)  

e 

g 

f 

h 
B = 

a 

c 

b 

d 
A = 

2. Using O(n2) scalar additions and subtractions, compute 14 

 matrices A1, B1, A2, B2, …, A7, B7, each of which is n/2  n/2. 

Yangjun Chen         ACS-7102 9 
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r = ae + bg = P5 + P4 - P2 + P6, 

s = af + bh = P1 + P2, 

t = ce + dg = P3 + P4, 

u = af + dh = P5 + P1 – P3 + P7. 

3. Recursively compute the seven matrix products 

  Pi = Ai  Bi for i = 1, 2, …, 7. 

4. Compute the desired submatrices r, s, t, u of the result matrix 

 C by adding and/or subtracting various combinations of the Pi 

 matrices, using only O(n2) scalar additions and subtraction. 

r 

t 

s 

u 

a 

c 

b 

d 

e 

g 

f 

h 
=  

Altogether 7 matrix multiplication, 

18 matrix additions and subtractions.  

Strassen’s algorithm works in four steps: 

Yangjun Chen         ACS-7102 10 
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Assume that n = 2m. We have 

T(2m) = 7T(2m-1) + 18(2m-1)2. 

Am = 7Am-1 + 18(2m-1)2,  A1 = 18. 

G(x) = A1 + A2x + A3x
2 + … 

= A1 + (7A1 + 1822)x 

+ (7A2 + 1823)x2 
… … 

= 8 + 7x (A1 + A2x + A3x
2 + …) + 184x/(1 – 4x) 

= 8 + 7x G(x) + 184x/(1 – 4x) 

(1 - 7x)G(x) = 18(4x/(1 – 4x) + 1) = 18/(1 – 4x) 

Generating 

function 

T(n) = 7T(n/2) + O(n2) 
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(1 - 7x)G(x) = 18(4x/(1 – 4x) + 1) = 18/(1 – 4x) 

G(x) = 18/(1 – 4x)(1 – 7x) = 18 
-4/3 

1 – 4x 
( + 

7/3 

1 – 7x 
) 

G(x) = 6     (7k+1 – 4k+1)xk  
k=0 

 

Am = 6(7m – 4m), m = log2n 

= O(67      ) log2n 

= O(6n      ) log27 

= O(n2.81) 

= A1 + A2x + A3x
2 + … 
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• Determining the submatrix products  

  It is not clear exactly how Strassen discovered the submatrix 

products that are the key to making his algorithm work. Here, 

we reconstruct one plausible discovery method. 

Write Pi = Ai  Bi 

 = (i1a + i2b + i3c + i4d) (i2e + i1f  + i3g + i4h), 

 

where the coefficients ij, ij are all drawn from the set {-1, 0, 1}. 

We guess that each product is computed by adding or subtracting 

some of the submatrices of A, adding or subtracting some of 

submatrices of B, and then multiplying the two results together.  
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Pi = Ai  Bi = (i1a + i2b + i3c + i4d) (i1e + i2f  + i3g + i4h) 

= (a b c d)         (i1 i2 i3 i4) 

i1 

i2 

i3 

i4 

e 

f 

g 

h 

= (a b c d) 

i1i1  i1i2  i1i3 i1i4  

i2i1  i2i2  i2i3 i2i4  

i3i1  i3i2  i3i3 i3i4  

i4 i1  i4i2  i4i3 i4i4  

e 

f 

g 

h 
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r 

t 

s 

u 

a 

c 

b 

d 

e 

g 

f 

h 
=  

r = ae + bg 

s = af + bh 

t = ce + dg 

u = af + dh 

r = ae + bg 

= (a b c d) 

e 

f 

g 

h 

+1 0 0 0 

0 0 +1 0 

0 0 0 0 

0 0 0 0 

So r is represented by a matrix: 

+        

      +   

          

          

‘’ – represents 0. 

‘+’ – represents +1. 

‘-’ – represents -1. 
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s = af + bh 

= 

  +      

         + 

          

          

t = ce + dg 

= 

          

          

+          

      +    

s = cf + dh 

= 

          

          

   +       

         + 

We will create 7 matrices in such a way that the above 4 matrices can 

be generated by addition and subtraction operations over these 7 

matrices. Furthermore, the 7 matrices themselves can be produced by 

7 multiplications and some additions and subtractions. 
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P1 = A1B1 = a·(f – h) = af - ah 

= 

  +     - 

          

          

          

s = af + bh 

= 

  +      

         + 

          

          

P2 = A2B2 = (a + b) h = ah + bh 

= 

         + 

         + 

          

          

= P1 + P2 

A1 = a, 

A2 = (a + b), 

A3 = (c + d), 

A4 = d, 

A5 = (a + d), 

A6 = (b – d), 

A7 = (c – a)  

B1 = (f – h), 

B2 = h, 

B3 = e, 

B4 = (g – d), 

B5 = (e + h), 

B6 = (g + h), 

B7 = (e + f)  
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P1 = A1B1 = a·(f – h) = af - ah 

= (a b c d) 

  +     - 

          

          

          

e 

f 

g 

h 
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P3 = A3B3 = (c + d) e = ce + de 

= 

          

          

+          

+          

t = ce + dg 

= 

          

          

+          

      +    

P4 = A4B4 = d (g - e) = dg - de 

= 

          

          

          

-      +    

= P3 + P4 

A1 = a, 

A2 = (a + b), 

A3 = (c + d), 

A4 = d, 

A5 = (a + d), 

A6 = (b – d), 

A7 = (c – a)  

B1 = (f – h), 

B2 = h, 

B3 = e, 

B4 = (g – d), 

B5 = (e + h), 

B6 = (g + h), 

B7 = (e + f)  
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P5 = A5B5 = (a + d) (e + h) 

= ae + ah + de + dh  

= 

+        + 

          

          

+         + 

r = ae + bg 

= 

+         

      +    

          

          

P6 = A6B6 = (b – d) (g + h) 

= bg + bh – dg - dh 

= 

          

      +  + 

          

      -   - 

= P5 + P4 – P2 + P6 

A1 = a, 

A2 = (a + b), 

A3 = (c + d), 

A4 = d, 

A5 = (a + d), 

A6 = (b – d), 

A7 = (c – a)  

B1 = (f – h), 

B2 = h, 

B3 = e, 

B4 = (g – d), 

B5 = (e + h), 

B6 = (g + h), 

B7 = (e + f)  
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P5 + P4 = 

+         + 

          

          

      +   + 

P5 + P4 - P2 = 

+         . 

         - 

          

      +   + 

P5 + P4 - P2 + P6 = 

+          

      +    

          

          

Yangjun Chen         ACS-7102 21 
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P7 = A7B7 = (a - c) (e + f) 

= ae + af - ce - cf  

= 

+  +      

          

-   -       

          

u = cf + dh 

= 

          

          

   +       

         + 

= P5 + P1 – P3 – P7 

A1 = a, 

A2 = (a + b), 

A3 = (c + d), 

A4 = d, 

A5 = (a + d), 

A6 = (b – d), 

A7 = (c – a)  

B1 = (f – h), 

B2 = h, 

B3 = e, 

B4 = (g – d), 

B5 = (e + h), 

B6 = (g + h), 

B7 = (e + f)  
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Warren’s Algorithm 
 Warren’s algorithm is a quite simple way to generate a boolean matrix to 

represent the transitive closure of a graph G. Assume that G is represented by a 

boolean matrix M in which M(i, j) = 1 if edge (i, j) is in G, and M(i, j) = 0 if 

(i, j) is not in G. Then, the matrix M’ for the transitive closure of G can be 

computed from M, in which M’(i, j) = 1 if there exits a path from i to j in G, and 

M’(i, j) = 0 if there is no path from i to j in G. Warren’s algorithm is given below: 

Algorithm Warren 

for i = 2 to n do 

 for j = 1 to i - 1 do 

 {if M(i, j) = 1 then set M(i, *) = M(i, *)  M(j, *);} 

for i = 1 to n - 1 do 

 for j = i + 1 to n do 

 {if M(i, j) = 1 then set M(i, *) = M(i, *)  M(j, *);} 

In the algorithm, M(i, *) denotes row i of M. 

The theoretic time complexity of Warren’s algorithm is O(n3). 

. . . . 

 . . . 

. . . . 

 . . . 
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if M(i, j) = 1 then set M(i, *) = M(i, *)  M(j, *) 

i 

j 

k x 

i 

j 

k 
x 

S. Warshall, “A Theorem on Boolean Matrices,” JACM, 9. 1(Jan. 1962), 11 - 12. 

H.S. Warren, “A Modification of Warshall’s Algorithm for the Transitive Closure of 

Binary Relations,” Commun. ACM 18, 4 (April 1975), 218 - 220. 

i 

j 

k 
x 

i 

j 

k 
x 

if M(i, k) = 1 then set M(i, *) = M(i, *)  M(k, *) 

Yangjun Chen         ACS-7102 24 
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• Definition 

 - We can assign each node v in a tree T an interval [v, v), 

 where v is v’s preorder number (denoted pre(v)) and v - 1 

 is equal to the largest preorder number among all the nodes 

 in T[v] (subtree rooted at v). 

 - So another node u labeled [u, u) is a descendant of v (with 

 respect to T) iff u  [v, v). 

 - If u  [v, v), we say, [u, u) is subsumed by [v, v). 

 This method is called the tree labeling. 

First kind of tree encoding 

H. Wang, H. He, J. Yang, P.S. Yu, and J. X. Yu, Dual Labeling: Answering 

Graph Reachability Queries in Constant time, in Proc. of Int. Conf. on Data 

Engineering, Atlanta, USA, April -8 2006.  
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Example: 

a 

b r h 

 

 

 

 

 

 

 

 

 

 

 

e 

f g 

i j 

 

 

 

 

 

 

 

 

 

 

 

[0, 13) 

[1, 6) 

[2, 5) 

[4, 5) 
[8, 9) [9, 10) 

[6, 10) [10, 13) 

[7, 10) 

[11, 12) [12, 13) 

 

 

 

 

 

 

 

c 

k 

p [3, 5) 

For a directed graph, the intervals cannot be used to 

check reachability. The containment is just a sufficient 

condition, not a necessary condition. 
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Directed acyclic graphs (DAGs) 

 - Find a spanning tree T of G(V, E), and assign each node v 

 an interval. 

 - Examine all the nodes in G in a reverse topological order 

 and do the following: 

  For every edge (v, u), add all the intervals associated with 

 the node u to the intervals associated with the node v. 

Reachability checking based on tree encoding 

Topological order of a directed acyclic graph: 

Linear ordering of the vertices of G such that if (u, v)  E, then 

u appears somewhere before v. 
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a 

b 

d 

r 
h 

 

 

 

 

 

 

 

 

 

 

 

e 

 

 

 

 

 

 

 

 

 

 

 

f 

 

 

 

 

 

 

 

 

 

 

 

g 

 

 

 

 

 

 

 

 

 

 

 

i 

 

 

 

 

 

 

 

 

 

 

 

j 

 

 

 

 

 

 

 

 

 

 

 

[0, 13) 

[1, 6) 

[2, 5) 

[4, 5) 

[5, 6) 

[8, 9) 
[9, 10) 

[6, 10) [10, 13) 

[7, 10) 
[11, 12) [12, 13) 

c 

k 

p [3, 5) 

Example: 

Topological order of a directed acyclic graph: 

Linear ordering of the vertices of G such that if (u, v)  E, then 

u appears somewhere before v. 

Topological order: a, b, r, h, e, f, g, d, c, p, k, i, j 

Yangjun Chen         ACS-7102 28 
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When we navigate along a topological order, for 

every edge (v, u), add all the intervals associated 

with the node u to the intervals associated with the 

node v. 

 
1. When adding an interval [i, j) to the interval sequence 

 associated with a node, if an interval [i’, j’) is subsumed 

 by [i, j), it will be discarded from the sequence. In other 

 words: if i’  [i, j), then discard [i’, j’). 

2. On the other hand, if an interval [i’, j’) is equal to [i, j) or 

 subsumes [i, j). [i, j) will not be added to the sequence. 

 Otherwise, [i, j) will be inserted. 
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Reverse topological order: 

A sequence of the nodes of G such that for any edge (u, 

v) v appears before u in the sequence. 

k,  p,  c,  d,  f,  g,  i,  j,  e,  r,  b,  h,  a 

L(k) = [4, 5) 

L(p) = [3, 5) 

L(c) = [2, 5) 

L(d) = [4, 5)[5, 6) 

L(f) = [4, 5)[5, 6)[8, 9) 

L(g) = [2, 5)[5, 6)[9, 10) 

L(i) = [11, 12) 

L(j) = [12, 13) 

L(e) = [2, 5)[5, 6)[7, 10) 

L(r) = [2, 5)[5, 6)[6, 10) 

L(b) = [1, 6) 

L(h) = [2, 5)[5, 6)[7, 10)[10, 13) 

L(a) = [10, 13) 

Reverse topological order 

a 

b 

d 

r 

e 

 

 

 

 

 

 

 

 

 

 

 

f 
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[1, 6) 

[2, 5) 

[4, 5) 

[5, 6) 

[8, 9) 

[9, 10) 

[6, 10) 
[10, 13) 

[7, 10) 

[11, 12) [12, 13) 
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p [3, 5) 
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Generation of interval sequences 

• Create interval sequences for all the nodes along the reverse 

 topological order 

• First of all, we notice that each leaf node is exactly associated 

 with one interval, which is trivially sorted according to the 

 first element in each interval. 

• Let v1, ..., vl be the child nodes of v, associated with the interval 

 sequences L1, ..., Ll, respectively. 

• Assume that the intervals in each Li are sorted. We will merge 

 all Li’s into the interval sequence L associated with v as follows.  

- Let [a1, b1) (from L) and [a2, b2) (from Li) be the interval 

 encountered. We will perform the following checkings: 
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- If a2 >= a1 then 

   {if a2  [a1, b1) then go to the interval next to [a2, b2) and 

      compare it  with [a1, b1) in a next step 

    else go to the interval next to [a1, b1) and compare it 

      with [a2, b2) in a next step.} 

- If a1 > a2 then 

   {if a1  [a2, b2) then remove [a1, b1) from L and compare 

      the interval next to [a1, b1) with [a2, b2) in 

       a next step. 

    else insert [a2, b2 ) into L before [a1, b1).} 

L = … [a1, b1) [a1’, b1’) … 

Li = … [a2, b2) [a2’, b2’) …  

- Let [a1, b1) (from L) and [a2, b2) (from Li) be the interval 

 encountered. We will perform the following checkings: 
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Generation of the interval sequence for node e: 

Initially, L(e)= [7, 10). 

First, merge L(e) = [7, 10) with L(f) = [4, 5)[5, 6)[8, 9). 

L(e) = [7, 10) 

L(f) = [4, 5)[5, 6)[8, 9) 

p 

q 

[4, 5)[7, 10) 

[4, 5)[5, 6)[8, 9) 

p 

q 

[4, 5)[5, 6)[7, 10) 

[4, 5)[5, 6)[8, 9) 

p 

q 

[4, 5)[5, 6)[7, 10) 

[4, 5)[5, 6)[8, 9) 

p 

q 
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p, q are pointer variables used to scan 

L(e) and L(f), respectively. 
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Secondly, merge L’(e) = [4, 5)[5, 6)[7, 10) with 

L(g) = [2, 5)[5, 6)[9, 10). 

L’(e) = [4, 5)[5, 6)[7, 10) 

L(g) = [2, 5)[5, 6)[9, 10) 

p 

q 

L’(e) = [5, 6)[7, 10) 

L(g) = [2, 5)[5, 6)[9, 10). 

p 

q 

p 

L’(e) = [2, 5)[5, 6)[7, 10) 

L(g) = [2, 5)[5, 6)[9, 10) 

q 

L’(e) = [4, 5)[5, 6)[7, 10) 

L(g) = [2, 5)[5, 6)[9, 10) 

p 

q 
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Secondly, merge L’(e) = [4, 5)[5, 6)[7, 10) with 

L(g) = [2, 5)[5, 6)[9, 10). 

p 

L’(e) = [2, 5)[5, 6)[7, 10) 

L(g) = [2, 5)[5, 6)[9, 10) 

q 

L’(e) = [2, 5)[5, 6)[7, 10) 

L(g) = [2, 5)[5, 6)[9, 10) 

p 

q 
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The size of the data structure is bounded by O(bn). 
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Reachability checking for DAGs 

- Let u and v be two nodes of G. 

- u is a descendant of v iff there exists an 

interval [, ) in L(v) such that u  [, ).  

Example: 

[k, k ) = [4, 5) 

L(r) = [2, 5)[5, 6)[6, 10) 

Node k is a descendant 

of node r. 
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Reachability checking for cyclic graphs 

- Using the Tarjan’s algorithm to recognize all the 

strongly connected components (SCCs). In each SCC, 

any two nodes are reachable from each other. 

- Collapse each SCC to a single node. In this way, any 

cyclic graph G is transformed to a DAG G’. 

- Let u and v be to two nodes in G. Check their 

reachability according to two cases: 

• u and v are in the same SCC. 

• u and v are in two different SCC. 

R. Tarjan: Depth-first Search and Linear Graph Algorithms, 

SIAM J. Compt. Vol. 1. No. 2. June 1972, pp. 146-140. 
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a 

b 

c 

d 

f 
e 

g 

a 

bcde f 

g 
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Second kind of tree encoding: Using tree 

encoding as a filter 

• Each node v in a tree T is labeled with a with a range: Iv = [rx, rv], 

 where rv is the postorder number of v (the postorder numbers  are 

assumed to begin at 1) and rx is the lowest postorder number of 

any node x in the subtree T[v] rooted at v (also, including v). 

• This approach guarantees that the containment between intervals is 

equivalent to the reachability relationship between the nodes, since 

the postorder traversal enters a node before all of its descendants 

have been visited. In other words, 

  u↝ v  Iv  Iu.  

H. Yildirim, V. Chaoji, and M. J. Zaki, “GRAIL: Scalable reachabil1473 ity index for 

llarge graphs,” in Proc. VLDB Endowment, vol. 3, no. 1, 1474 pp. 276–284, 2010.  
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Example: 

The above figure shows the interval labeling on a tree, assuming that 

the children are ordered from left to right. It is easy to see that 

reachability can be answered by interval containment. For example, 

1 ↝  9, since I9 = [2, 2] ⊂ [1, 6] = I1, but 2 ↝ 7, since I7 = [1, 3] 

 [7, 9] = I2. 

[1,10] 
0 

1 2 

3 4 5 

6 7 

8 9 

[1,6] [7,9] 

[7,8] 

[1,3] 

[2,2] 

[1,4] 

[7,7] 

[5,5] 

[1,1] 
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Using tree encoding as a filter 

 To generalize the interval labeling to a DAG G, we have to 

ensure that a node is not visited more than once during a 

bottom-up search of G, and a node will keep the postorder 

number rv of its first visit. Its rx is now the lowest postorder 

number in the sub-graph rooted at v. 

[1,10] 
0 

1 2 

3 4 5 

6 7 

8 9 

[1,6] [1,9] 

[1,8] 

[1,3] 

[2,2] 

[1,4] 

[1,7] 

[1,5] 

[1,1] 

[1,10] 
0 

1 2 

3 4 5 

6 7 

8 9 

[1,6] [7,9] 

[7,8] 

[1,3] 

[2,2] 

[1,4] 

[7,7] 

[5,5] 

[1,1] 
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For example, 5↝ 4, but I4 = [1, 5] ⊆ [1, 8] = I5. In other words, 

Iv ⊆ Iu does not imply that u↝ v. On the other hand, one can show 

that Iv  Iu ⇒ u↝  v. (So the containment is a necessary condition, 

not a sufficient condition.) 

[1,10] 

0 

1 2 

3 4 5 

6 7 

8 9 

[1,6] [1,9] 

[1,8] 

[1,3] 

[2,2] 

[1,4] 

[1,7] 

[1,5] 

[1,1] 

The above shows an interval labeling on a DAG, assuming a left to 

right ordering of the children. As one can see, interval containment 

of nodes in a DAG is not exactly equivalent to reachability.  
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• Instead of using a single interval, one can employs multiple intervals 

 that are obtained via random graph traversals. 

• We use the symbol d to denote the number of intervals to keep per 

 node, which also corresponds to the number of graph traversals used 

 to obtain the label. 

• The following figure shows a DAG labeling using 2 intervals 

 (the first interval assumes a left-to-right ordering of the children, 

 whereas the second interval assumes a right-to-left ordering). 
[1,10], [1, 10] 

0 

1 2 

3 4 5 

6 7 

8 9 

[1,6], [1, 9] [1,9], [1, 7] 

[1,8], [1, 3] 

[1,3], [1, 5] 

[2,2], [4, 4] 

[1,4], [1, 6] 

[1,7], [1, 2] 

[1,5], [1, 8] 

[1,1], [1, 1] 

[1, 10] 
0 

1 2 

3 4 5 

6 7 

8 9 

[1, 9] [1, 7] 

[1, 3] 

[1, 5] 

[4, 4] 

[1, 6] 

[1, 2] 

[1, 8] 

[1, 1] 
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Index construction 
An interval Iu

i is denoted as 

  Iu
i = [Iu

i[1], Iu
i[2] ] = [rx, ru] 

Algorithm 1: Randomized Intervals 

 RandomizedLabeling(G, d): 

1 foreach i ← 1 to d do   (*d – number of intervals for each node*) 

2  r ← 1 // global variable: postorder number of node 

3  Roots ← {n : n ∈ roots(G)} 

4  foreach x ∈ Roots in random order do 

5   Call RandomizedVisit(x, i, G) 

 

 RandomizedVisit(x, i, G) : 

6 if x visited before then return 

7 foreach y ∈ Children(x) in random order do 

8  Call RandomizedVisit(y, i, G) 

9 rc* ← min{Ic
i[1] : c ∈ Children(x)} 

10 Ix
i ← [min(r, rc* ), r]  (*Compute [Ix

i[1], Ix
i[2] ].*) 

11 r ← r + 1 
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Reachability queries 

• Assume that each node is associated with an single interval. 

• To answer reachability queries between two nodes, u and v, 

 we will first check whether Iv   Iu. If so, we can immediately 

 conclude that u ↝ v. 

• On the other hand, if Iv ⊆ Iu, nothing can be concluded 

 immediately since we know that the index can have false positives, 

 i.e., exceptions. In this case, a DFS (depth-first search) is 

 conducted, with recursive containment check based pruning, 

 to answer queries. In the worst case, it needs O(n) time. 

• Another way is to check the exception lists associated with the 

 nodes: 

Ex = {y : (x, y) is an exception, i.e., Iy ⊆ Ix and x ↝ y}.  
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[1,10] 
0 

1 2 

3 4 5 

6 7 

8 9 

[1,6] [1,9] 

[1,8] 

[1,3] 

[2,2] 

[1,4] 

[1,7] 

[1,5] 

[1,1] 

Exception lists: 

 

E2 = {1, 4} 

E4 = {3, 7, 9} 

E5 = {1, 3, 4, 7, 9} 

E6 = {1, 3, 4, 7, 9} 
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DFS with prunning 

Algorithm 2: Reachability Testing (*for the case of only one interval*) 

Reachable(u, v, G): 

1 if Iv  Iu then 

2   return False (* u ↝ v *) 

3 else if use exception lists then 

4   if v ∈ Eu then return False (* u ↝ v *) 

5   else return True (* u ↝ v *) 

6  else (*No exception list. DFS with pruning using intervals.*) 

7  foreach c  Children(u) such that Iv ⊆ Ic do 

8    if Reachable(c, v, G) then 

9     return True (* u ↝ v *) 

10   return False (* u ↝ v *) 


