
Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 1

Evaluation of Tree Pattern Queries

• Motivation

• Tree encoding and XML data streams

• Evaluation of unordered tree pattern queries

• Evaluation of ordered tree pattern queries

• XB-trees

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 2

Motivation

• Efficient method to evaluate XPath expression queries –

XML query processing

XML documentsa tree pattern query
(represented as an XPath
expression)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 3

Motivation

Document:

<Purchase>
<Seller>

<Name>dell</Name>
<Item>

<Manufacturer>IBM</Manufacturer>
<Name>part#1</Name>
<Item>

<Manufacturer>Intel</Manufacturer>
</Item>

</Item>
<Item>

<Name>Part#2</Name>
</Item>
<Location>Houston</Location>

</Seller>
<Buyer>

<Location>Winnipeg</Location>
<Name>Y-Chen</Name>

</Buyer>
</Purchase>

P

S B

I I L L NN

I

M

M N N

IBMPart#1 Part#2

Dell Houston

Winnipeg

Y-Chen

Intel

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 4

Motivation

Document:

Query – XPath expressions:

Q1: /Purchase[Seller/Location=‘Houston’]/
Buyer[Location = ‘Winnipeg’]

Q2: /Purchase//Item[Manufacturer = ‘Intel’]

Purchase

Seller Buyer

Location Location

‘Houston’ ‘Winnipeg’

Buyer

Item

Manufacturer

‘Intel’

d-edge: ancestor-
descendant relationship

c-edge: parent-child
relationship

P

S B

I I L L NN

I

M

M N N

IBMPart#1 Part#2

Dell Houston

Winnipeg

Y-Chen

Intel

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 5

Let T be a document tree. We associate each node v in T with a

quadruple (DocId, LeftPos, RightPos, LevelNum), denoted as (v),

where

• DocId is the document identifier;

• LeftPos and RightPos are generated by counting word

numbers from the beginning of the document until the start

and end of the element, respectively; and

• LevelNum is the nesting depth of the element in the

document.

By using such a data structure, the structural relationship between

the nodes in an XML database can be simply determined.

Tree Encoding

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 6

A v1

B v8v2 B

v3 C B v4

v5 C v6 C v7 D

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 3, 3, 3) (1, 4, 8, 3)

(1, 5, 5, 4) (1, 7, 7, 4)

(1, 6, 6, 4)

T:

DocId
LeftPos

RightPos
LevelNum

<A>

<C>string</C>

<C>string</C>

<C>string</C>

<D>string</D>

string

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 7

Tree Encoding

(i) ancestor-descendant: a node v1 associated with (d1, l1, r1, ln1)

is an ancestor of another node v2 with (d2, l2, r2, ln2) iff

d1 = d2, l1 < l2, and r1 > r2.

(ii) parent-child: a node v1 associated with (d1, l1, r1, ln1) is the

parent of another node v2 with (d2, l2, r2, ln2) iff d1 = d2,

l1 < l2, r1 > r2, and ln2 = ln1 + 1.

(iii) from left to right: a node v1 associated with (d1, l1, r1, ln1) is to

the left of another node v2 with (d2, l2, r2, ln2) iff d1 = d2,

r1 < l2.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 8

Data Streams

T:B:

(1, 2, 9, 2)

(1, 4, 8, 3)

(1, 10, 10, 2)

A:

(1, 1, 11, 1)

C:

(1, 3, 3, 3)

(1, 5, 5, 4)

(1, 6, 6, 4)

D:

(1, 7, 7, 4)

A v1

B v8v2 B

v3 C B v4

v5 C v6 C v7 D

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 3, 3, 3) (1, 4, 8, 3)

(1, 5, 5, 4) (1, 7, 7, 4)

(1, 6, 6, 4)

The data streams are sorted by (DocID, LeftPos).

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 9

Tree Pattern queries

XPath: /A[.//B[.//C]/C]//B

A q1

B q5q2 B

q3 C C q4

{v1}

{v2, v4, v8} {v2, v4, v8}

{v3, v5, v6} {v3, v5, v6}

(1, 2, 9, 2)

(1, 4, 8, 3)

(1, 10, 10, 2)

descendant edge (//-edge, u  v)

child edge (/-edge, u → v)

Q:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 10

Data Streams – B(q)’s

B({q2, q5}):

(1, 2, 9, 2) v2

(1, 4, 8, 3) v4

(1, 10, 10, 2) v8

B(q1):

(1, 1, 11, 1) v1

B({q3,q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

The data streams are sorted by (DocID, LeftPos).

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 3, 3, 3) (1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(Sorted according to LeftPos)

A q1

B q5
q2 B

q3 C C q4

Q:

Search tree in preorder (top-down)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 11

Definition An embedding of a tree pattern Q into an XML document

T is a mapping f: Q → T, from the nodes of Q to the nodes of T,

which satisfies the following conditions:

Unordered Tree Matching

(i) Preserve node type: For each u  Q, u and f(u) are of the same

tag, (or more generally, u’s label is the same as f(u)’s label.)

(ii) Preserve ancestor/descendant-parent/child relationships: If u → v

in Q, then f(v) is a child of f(u) in T; if u  v in Q, then f(v) is a

descendant of f(u) in T.

T:
A v1

B v8v2 B

v3 C B v4

C v5 v6 C v7 D

Q: A q1

D q3q2 B

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 12

Algorithm for Unordered Tree Matching Based on Two

Concepts:

• XML Data Stream Transformation

• Matching Subtrees

The data stream transformation can be done for the documents,

independent of queries.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 13

Data Stream Transformation

• Note that iterating through the stream nodes in sorted order of

their LeftPos values corresponds to access of document nodes

in preorder (top-down search).

• We can transform a data stream to another, in which the

quadruples are sorted by RightPos values, corresponding to a search

in postorder (bottom-up search). (It is because our algorithm needs

to access the data stream in this way.)

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 3, 3, 3) (1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 14

A (1, 1, 11, 1)

B (1, 2, 9, 2)

C (1, 3, 3, 3)

B (1, 4, 8, 3)

C (1, 5, 5, 4)

C (1, 6, 6, 4)

B (1, 10, 10, 2)

T

C (1, 3, 3, 3)

C (1, 5, 5, 4)

C (1, 6, 6, 4)

B (1, 4, 8, 3)

B (1, 2, 9, 2)

B (1, 10, 10, 2)

C (1, 1, 11, 1)

T

transformation

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 3, 3, 3) (1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 15

Data Streams – L(q)’s

The data streams are sorted by (DocID, RightPos).

L({q2, q5}):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

L(q1):

(1, 1, 11, 1) v2

L(q3,q4):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

(Sorted according to RightPos)

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

A q1

B q5
q2 B

q3 C C q4

Q:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 16

L({q2, q5}):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

L(q1):

(1, 1, 11, 1) v2

L(q3,q4):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

A q1

B q5
q2 B

q3 C C q4

Q:

B({q2, q5}):

(1, 2, 9, 2) v2

(1, 4, 8, 3) v4

(1, 10, 10, 2) v8

B(q1):

(1, 1, 11, 1) v1

B({q3,q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 17

• We maintain a global stack ST to make a transformation of

data streams using the following algorithm.

• In ST, each entry is a pair (q, v) with q  Q, v  T (v is

represented by its quadruple) and label(v) = label(q).

Algorithm for Data Stream Transformation

q (d, l, r, ln)

ST:
T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 18

Algorithm stream-transformation(B(qi)’s)

input: all data streams B(qi)’s, each sorted by LeftPos.

output: new data streams L(qi)’s, each sorted by RightPos.

begin

1. repeat until each B(qi) becomes empty

2. { identify qi such that the first element v of B(qi) is of

the minimal LeftPos value; remove v from B(qi);

3. while ST is not empty and ST.top is not v’s ancestor do

4. { x  ST.pop(); Let x = (qj, u);

5. put u at the end of L(qi);

6. }

7. ST.push(qi, v);

8. }

9. Pop out all the remaining elements in ST and insert them into the

corresponding L(qi)’s;

end

B({q2, q5}) - B:

(1, 2, 9, 2) v2

(1, 4, 8, 3) v4

(1, 10, 10, 2) v8

B(q1) - A:

(1, 1, 11, 1) v1

B({q3,q4}) - C:

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

B() - D:

(1, 7, 7, 4) v6

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 19

• In the above algorithm, ST is used to keep all the nodes on a path

until we meet a node v that is not a descendant of ST.top.

• Then, we pop up all those nodes that are not v’s ancestor; put them

at the end of the corresponding L(qi)’s (see lines 3 - 4), and push v

into ST (see line 7), where L(qi) is another data stream created for

qi, sorted by (DocID, RightPos) values.

• All the data streams L(qi)’s make up the output of the algorithm.

• However, we remark that the popped nodes are in postorder. So

we can directly handle the nodes in this order without explicitly

generating L(qi)’s. T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 3, 3, 3) (1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

B({q2, q5}) - B:

(1, 2, 9, 2) v2

(1, 4, 8, 3) v4

(1, 10, 10, 2) v8

B(q1) - A:

(1, 1, 11, 1) v1

B({q3,q4}) - C:

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

A q1

B q5
q2 B

q3 C C q4

Q:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 20

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 3, 3, 3) (1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)q1 v1

ST:

When checking v4, v3 will be popped out and inserted into L(q3) since

v3 is not a descendant of v4. After that v4 will be pushed into the stack.

q2 v4

q2 v2

q1 v1

B(q1): B({q2, q5}):

(1, 10, 10, 2) v8

B({q3, q4}):

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

L({q3, q4}):

(1, 3, 3, 3) v3

B({q2, q5}) - B:

(1, 2, 9, 2) v2

(1, 4, 8, 3) v4

(1, 10, 10, 2) v8

B(q1) - A:

(1, 1, 11, 1) v1

B({q3,q4}) - C:

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

q3 v3

q2 v2

q1 v1

ST:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 21

When checking v5, it will be pushed into the stack.

ST: B(q1):

B({q3, q4}):

(1, 6, 6, 4) v6

q3 v5

q2 v4

q2 v2

q1 v1

When checking v6, v5 will be popped out and inserted into L(q3) since

v6 is not a descendant of v5. After that v6 will be pushed into the stack.

ST: B(q1): B({q2, q5}):

(1, 10, 10, 2) v8

B({q3, q4}):

L({q3, q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

q3 v6

q2 v4

q2 v2

q1 v1

L({q3, q4}):

(1, 3, 3, 3) v3

B({q2, q5}):

(1, 10, 10, 2) v8

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 22

When checking v8, v6 will be popped out and inserted into L(q3) since

v8 is not a descendant of v6. After that v6 will be pushed into the stack.

q2 v4

q2 v2

q1 v1

ST: B(q1): B({q2, q5}):

B({q3, q4}): L({q3, q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

After that v4 will be popped out and

inserted into L(q2) since v8 is not a descendant of v4.

q2 v2

q1 v1

ST: B(q1): B({q2, q5}):

B({q3, q4}):

L({q3, q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

L({q2, q5}):

(1, 4, 8, 3) v4

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 23

After that v2 will be popped out and inserted into L(q2) since

v8 is not a descendant of v2.

q1 v1

ST:
B(q1): B({q2, q5}):

B({q3, q4}):

L({q3, q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

L({q2, q5}):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

Since v8 is a descendant of v1, it will be pushed into the stack.

q2 v8

q1 v1

ST:

B(q1): B({q2, q5}):

B({q3, q4}):

L({q3, q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

L({q2, q5}):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 24

After that v8 will be popped out and inserted into L(q2).

q1 v1

ST: B(q1): B({q2, q5}):

B({q3, q4}):

After that v1 will be popped out and inserted into L(q1).

ST:

B(q1): B({q2, q5}):

B({q3, q4}):

L({q3, q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

L({q2, q5}):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

L(q1):

(1, 1, 11, 1) v1

L({q3, q4}):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

L({q2, q5}):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2) (1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 3, 3, 3)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 25

Matching Subtrees

Let T be a tree and v be a node in T with parent node u. Denote by

delete(T, v) the tree obtained from T by removing node v. The

children of v become ‘descendant’ children of u.

B v1

B v3v2 C v4 C v5 C v6 D

delete(T, v3)
B v1

v2 C

v4 C v5 C v6 D

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 26

Definition (matching subtrees) A matching subtree T’ of T with

respect to a tree pattern Q is a tree obtained by a series of deleting

operations to remove any node in T, which does not match any

node in Q.

A v1

B v8v2 B

v3 C B v4

v5 C v6 C v7 D

T:

A q1

D q3q2 C

Q:

v4 C v5 C v6 D

A v1

v2 C

a matching subtree:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 27

Construction of Matching Subtree from Data Streams

• The algorithm given below handles the case when the streams

contain nodes from a single XML document. (When the streams

contain nodes from multiple documents, the algorithm is easily

extended to test equality of DocId before manipulating the nodes

in the streams.)

• It is simply an iterative process to access the nodes in L(Q) one

by one. Here, L(Q) = L(q1)  L(q2) …  L(qk).

L(q2): B

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

L(q1): A

(1, 1, 11, 1) v1

L(q3): C

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

q1 = {q1}

q2 = {q2, q5}

q3 = {q3, q4}

A q1

B q5
q2 B

q3 C C q4

Q:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 28

Construction of Matching Subtree from Data Streams

It is simply an iterative process to access the nodes in L(Q) (= L(q1)  L(q2)

…  L(qk) one by one:

1. Identify a data stream L(q) with the first element being of the minimal

RightPos value. Choose the first element v of L(q). Remove v from L(q).

2. Generate a node for v.

3. If v is not the first node, we do the following:

Let v’ be the node chosen just before v.

- If v’ is not a child (descendant) of v, create a link from v to v’, called

a left-sibling link and denoted as left-sibling(v) = v’.

- If v’ is a child (descendant) of v, we will first create a link from v’ to v,

called a parent link and denoted as parent(v’) = v. Then, we will go

along the left-sibling chain starting from v’ until we meet a node v’’

which is not a child (descendant) of v. For each encountered node u

except v’’, set parent(u)  v. Finally, set left-sibling(v)  v’’.

v’ v

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 29

…
v’

v’’

v

v’’ is not a child of v.

link to the left sibling

…
v’

v’’

v

In the figure, we show the navigation along a left-sibling chain starting from v’

when we find that v’ is a child (descendant) of v. This process stops whenever we

meet v’’, a node that is not a child (descendant) of v. The figure shows that the

left-sibling link of v is set to v’’, which is previously pointed to by the left-sibling

Link of v’s left-most child.



Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 30

…
v’

v’’

v



Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 31

Algorithm matching-tree-construction(L(Q)) (* L(Q) = L(q1)  L(q2) …  L(qk) *)

input: all data streams L(Q).

output: a matching subtree T’.

begin

1. repeat until each L(q) in L(Q) becomes empty

2. { identify q such that the first element v of L(q) is of the minimal RightPos

value; remove v from L(q);

3. generate node v;

4. if v is not the first node created then

5. { let v’ be the node generated just before v;

6. if v’ is not a child (descendant) of v then

7. Left-sibling(v)  v’ ; (*generate a left-sibling link.*)

8. {v’’  v’ , w  v’ , (*v’’ and w are two temporary variables.*)

9. while v’’ is a child (descendant) of v do

10. { parent(v’’)  v; (*generate a parent link. Also, indicate whether v’’

is a /-child or a //-child.*)

11. w  v’’ ; v’’  left-sibling(v’’);

12. }

14. left-sibling(v)  v’’; } }

15. }

end

L({q2, q5}) - B:

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

L(q1) - A:

(1, 1, 11, 1) v1

L({q3,q4}) - C:

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 32

• In the above algorithm, for each chosen v from a L(q), a node is

created.

• At the same time, a left-sibling link of v is established, pointing to

the node v’ that is generated before v, if v’ is not a child

(descendant) of v (see line 7).

• Otherwise, we go into a while-loop to travel along the left-sibling

chain starting from v’ until we meet a node v’’ which is not a child

(descendant) of v.

• During the process, a parent link is generated for each node

encountered except v’’. (See lines 9 - 13.) Finally, the left-sibling

link of v is set to be v’’ (see line 14).

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 33

Example Consider the following data stream L(q)’s:

Data Streams – L(q)’s

T: A v1

B v8v2 B

v3 C B v4

v5 C v6 C

(1, 1, 11, 1)

(1, 2, 9, 2)

(1, 10, 10, 2)

(1, 4, 8, 3)

(1, 5, 5, 4)

(1, 6, 6, 4)

The data streams are sorted by (DocID, RightPos).

L({q2, q5):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

L(q1):

(1, 1, 11, 1) v2

L(q3,q4):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

(1, 3, 3, 3)

v7 D (1, 7, 7, 4)

A q1

B q5q2 B

q3 C C q4

Q:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 34

Example (continued) L(q) = {v1}, L(q’) = {v4, v2, v8},

L(q’’) = {v3, v5, v6}, where q = {q1}, q’ = {q2, q5}, q’’ = {q3, q4}.

Applying the above algorithm to the data streams, we generate a

series of data structures as shown below.

v with the least RightPos: Generated data structure:

v3

v5

v6

v4

step 1:

step 2:

step 3:

step 4:

v3

v3

v5

v3

v5

v6

v3

v5

v6

v4

L(q1):

(1, 1, 11, 1) v2

L({q2, q5):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

L(q3,q4):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 35

v with the least RightPos: Generated data structure:

v2

v8

v1

step 5:

step 6:

step 7:

v2

v3

v5

v6

v4

v2

v3

v5

v6

v4

v8

v2

v3

v5

v6

v4

v8

v1

L(q1):

(1, 1, 11, 1) v2

L({q2, q5):

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

L(q3,q4):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 36

The time complexity of this process is easy to analyze.

• First, we notice that each quadruple in all the data streams is

accessed only once.

• Secondly, for each node in T’, all its child nodes will be

visited along a left-sibling chain for a second time.

So we get the total time

O(|D||Q|) + = O(|D||Q|) + O(|T’|) = O(|D||Q|),

where D is the largest data stream and di represents the outdegree

of node vi in T’.

During the process, for each encountered quadruple, a node v will

be generated. Associated with this node have we at most two links

(a left-sibling link and a parent link). So the used extra space is

bounded by O(|T’|).


i

di

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 37

Proposition 1 Let T be a document tree. Let Q be a tree pattern.

Let L(Q) = {L(q1), ..., L(ql)} be all the data streams with respect to

Q and T, where each qi (1  i  l) is a subset of sorted query nodes

of Q, which share the same data stream. Algorithm

matching-tree-construction(L(Q)) generates the matching subtree

T’ of T with respect to Q correctly.

Proof. Denote L = |L(q1)| + ... + |L(ql)|. We prove the proposition

by induction on L.

Basis. When L = 1, the proposition trivially holds.

Induction hypothesis. Assume that when L = k, the proposition

holds.

Induction step. We consider the case when L= k + 1. Assume that

all the quadruples in L(Q) are {u1, ..., uk, uk+1} with RightPos(u1)

< RightPos(u2) < ... < RightPos(uk) < RightPos(uk+1).

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 38

The algorithm will first generate a tree structure Tk for {u1, ..., uk}.

In terms of the induction hypothesis, Tk is correctly created. It can

be a tree or a forest. If it is a forest, all the roots of the subtrees in

Tk are connected through left-sibling links. When we meet vk+1,

we consider two cases:

i) vk+1 is an ancestor of vk,

ii) vk+1 is to the right of vk.

In case (i), the algorithm will generate an edge (vk+1, vk), and then

travel along a left-sibling chain starting from vk until we meet a

node v which is not a descendant of vk+1. For each node v’

encountered, except v, an edge (vk+1, v’) will be generated.

Therefore, Tk+1 is correctly constructed. In case (ii), the algorithm

will generate a left-sibling link from vk+1 to vk. It is obviously

correct since in this case vk+1 cannot be an ancestor of any other

node. This completes the proof.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 39

Tree pattern matching

We observe that during the reconstruction of a matching subtree

T’, we can also associate each node v in T’ with a query node stream

QS(v). That is, each time we choose a v with the least RightPos value

from a data stream L(q), we will insert all the query nodes in q into

QS(v).

v3

C
{q3, q4}

A v1

B v8v2 B

v3 C B v4

v5 C v6 C

T’: {q1}

{q2, q5} {q2, q5}

{q2, q5}{q3, q4}

{q3, q4} {q3, q4}

L(q3,q4):

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

A q1

B q5q2 B

q3 C C q4

Q:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 40

If we check, before a q is inserted into the corresponding QS(v),

whether Q[q] (the subtree rooted at q) can be imbedded into T’[v],

we get in fact an algorithm for tree pattern matching. The challenge

is how to conduct such a checking efficiently.

• For this purpose, we associate each q in Q with a variable, denoted

(q).

• During the process, (q) will be dynamically assigned a series

of values a0, a1, ..., am for some m in sequence, where a0 =  and

ai’s (i = 1, ..., m) are different nodes of T’.

(q) = v indicates that Q[q] matches T’[vi] for some child vi of v.

q

v

vi

… …

If Q[q] matches T’[vi], (q) is set to be v.

Some time later, when q is checked

again, (q) will be changed.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 41

• Initially, (q) is set to a0 = .

• (q) will be changed from ai-1 to ai = v (i = 1, ..., m) when

the following conditions are satisfied.

i) v is the node currently encountered.

ii) q appears in QS(u) for some child node u of v.

iii) q is a //-child, or

q is a /-child, and u is a /-child of v with label(u) = label(q).

v3

C C C{q3, q4}

v5
{q3, q4} {q3, q4}

v6

(q3) = , (q4) =  v3
C

C C

{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

B {q2, q5}
v4 (q3) = v4

(q4) = v4

A q1

q5 Bq2 B

q3 C C q4

Q:



For this purpose, we associate each q in Q with a variable, denoted (q). During the

process, (q) will be dynamically assigned a series of values a0, a1, ..., am for some

m in sequence, where a0 =  and ai’s (i = 1, ..., m) are different nodes of T’.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 42

Then, each time before we insert q into QS(v), we will do the

following checking:

1. Let q1, ..., qk be the child nodes of q.

2. If for each qi (i = 1, ..., k), (qi) is equal to v and label(v) = label(q),

insert q into QS(v).

v3
C

C C

{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

B {q2, q5}
v4 (q3) = v4, (q4) = v4 A q1

q5 Bq2 B

q3 C C q4

Q:

Since we search both T and Q bottom-up, the above checking

guarantees that for any q  QS(v), T’[v] contains Q[q].



Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 43

The following algorithm unordered-tree-matching(L(Q))

is similar to Algorithm matching-tree-construction(),

by which

• a quadruple is removed in turn from the data streams

L(q)’s and a node v for it is generated and inserted into

the matching subtree.

• It will be checked for each q  q whether q can be

inserted into QS(v).

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 44

Algorithm unordered-tree-matching(L(Q))

input: all data streams L(Q).

output: a matching subtree T’ of T, Droot and Doutput.

begin

1. repeat until each L(q) in L(Q) becomes empty {

2. identify q such that the first node v of L(q) is of the minimal

RightPos value; remove v from L(q); generate node v;

3. if v is the first node created then

4. {QS(v)  subsumption-check(v, q); }

5. else

6. { let v’ be the quadruple chosen just before v, for which a node

is constructed;

7. if v’ is not a child (descendant) of v then

8. { left-sibling(v)  v’ ; }

9. else

10. {v’’  v’; w  v’; (*v’’ and w are two temporary units.*)

…
v’

v

v’’ w

v’ v

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 45

11. while v’’ is a child (descendant) of v do

12. {parent(v’’)  v; (*generate a parent link. Also, indicate

whether v’’ is a /-child or a //-child.*)

13. for each q in QS(v’’) do { (*For each q in QS(v’’), compute (q).*)

14. if ((q is a //-child) or (q is a /-child and v’’ is a /-child and

15. label(q) = label(v’’)))

16. then (q)  v;}

17. w  v’’ ; v’’  left-sibling(v’’);

18. remove left-sibling(w);

19. }

20. left-sibling(v)  v’’ ;

21. }

22. q  subsumption-check(v, q);

23. let v1, ..., vj be the child nodes of v;

24. q’  merge(QS(v1), ..., QS(vj));

25. remove QS(v1), ..., QS(vj);

26. QS(v)  merge(q, q’);

27. } }

end

…
v’

v

v’’ w

By merge(QS(v1), QS(v2)),

we will put QS(v1) and

QS(v2) together, but

remove all those nodes

which are descendants

of some other nodes.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 46

Two data structures are used:

Droot - a subset of document nodes v such that Q can be embedded

in T[v].

Doutput - a subset of document nodes v that is in a subtree

containing Q, and matches qoutput, where qoutput is the output node

of Q.

Q1: /Purchase[Seller[Loc=‘Boston’]]/
Buyer[Loc = ‘New York’]

Purchase

Seller Buyer

Location Location

‘Houston’ ‘Winnipeg’

Q2: /Purchase//Item[Manufacturer = ‘Intel’]

Buyer

Item

Manufacturer

‘Intel’

output output

subsumption-check(v, q) – for each q in q, check whether Q[q]

can be embedded in T[v].

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 47

Function subsumption-check(v, q) (*v satisfies the node name test

1. QS  ; at each q in q.*)

2. for each q in q do {

3. let q1, ..., qj be the child nodes of q.

4. if for each /-child qi (qi) = v and for each //-child q (qi) is

subsumed by v then

5. {QS  QS  {q};

6. if q is the root of Q then

7. Droot  Droot  {v};

8. if q is the output node then Doutput  Doutput  {v}; } }

9. return QS;

end

If q is a leaf node and label(q) = label(v), do QS  QS  {q}.

subsumption-check(v, q) – for each q in q, check whether Q[q]

can be embedded in T[v].

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 48

Example.

The data streams are sorted by (DocID, RightPos).

v3

C C C{q3, q4}

v5
{q3, q4} {q3, q4}

v6

A q1

B q5q2 B

q3 C C q4

{v1}

{v4, v2, v8} {v4, v2, v8}

{v3, v5, v6} {v3, v5, v6}

Q:

v3
C

C C

{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

B {q2, q5}
v4

(q3) = v4

(q4) = v4

(q3) = , (q4) = 

B({q2, q5}) - B:

(1, 2, 9, 2) v2

(1, 4, 8, 3) v4

(1, 10, 10, 2) v8

B(q1) - A:

(1, 1, 11, 1) v1

B({q3,q4}) - C:

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 49

v3

C

C C

{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

B
{q2, q5}

v4

(q3) = v2

(q4) = v2

(q2) = v2

(q5) = v2

B {q2, q5}
v2

v3

C

C C

{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

B
{q2, q5}

v4

(q3) = v2

(q4) = v2

(q2) = v2

(q5) = v2

B
{q2, q5}

v2

B

v8

{q5}

v3

C

C C

{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

B
{q2, q5}

v4

(q3) = v2

(q4) = v2

(q2) = v1

(q5) = v1

B
{q2, q5}

v2

B

v8

{q5}

A
v1

{q1}

A q1

q5 Bq2 B

q3 C C q4

Q:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 50

The time complexity of the algorithm can be divided into three parts:

1. The first part is the time spent on accessing L(q)’s. Since each

element in a L(q) is visited only once, this part of cost is bounded

by O(|D||Q|), where D is the largest data stream associated with a

query node.

2. The second part is the time used for constructing QS(v)’s. For

each node v in the matching subtree, we need O() time to do

the task, where is the outdegree of , which matches v. So this

part of cost is bounded by

O()  O(|D|) = O(|D||Q|).

3. The third part is the time for establishing (q) values, which is the

same as the second part since for each q in a QS(v) its (q) value is

assigned only once.


i

ci

ci qi


i

ci
v


i

ci

|Q|

v
qi

Q

...

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 51

The space overhead of the algorithm is easy to analyze.

• Besides the data streams, each node in the matching tree needs a

parent link and a left-sibling link to facilitate the subtree

reconstruction, and an QS to calculate (q) values.

• However, the QS(v) data structure is removed once its parent node is

created. In addition, each node in the tree pattern is associated with

a  value. So the extra space requirement is bounded by

O(leafT’|Q| + |T’|) + O(|Q|) = O(leafT’|Q| + |T’|),

where leafT’ represents the number of the leaf nodes of T’.

leafT’|Q| - the upper bound on the size of all QS(v)’s

T’ – the matching subtree

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 52

Definition An embedding of a tree pattern Q into an XML document

T is a mapping f: Q → T, from the nodes of Q to the nodes of T,

which satisfies the following conditions:

Ordered Tree Matching

(i) Preserve node type: For each u  Q, u and f(u) are of the same

type. (or more generally, u’s predicate is satisfied by f(u).)

(ii) Preserve child/descendant-child relationships: If u → v in Q, then

f(v) is a child of f(u) in T; if u  v in Q, then f(v) is a descendant

of f(u) in T.

(iii) Preserve left-to-right order: For any two siblings v1, v2 in Q, if v1

is to the left of v2, then f(v1) is to the left of f(v2) in T.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 53

T: A v1

B v8v2 B

v3 C B v4

C v5 v6 C v7 D

Q: A q1

D q3q2 B



T: A v1

B v8v2 B

v3 C B v4

C v5 v6 C v7 D

Q: A q1

D q3q2 C

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 54

Algorithm for Ordered Tree Matching Based on two

concepts:

• Breadth-first numbering

• Linked list of quadruples

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 55

Breadth-first numbering

• In order to capture the order of siblings, we create a new number

for each node q in Q by searching Q in the breadth-first fashion.

Such a number is then called a breadth-first number and denoted

as bf(q). As illustrated in the following figure (see the numbers

in boldface), they represent the left-to-right order of siblings in

a simple way.

A q1

B q5q2 B

q3 C C q4

Q: 1

2 3

4 5

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 56

• Then, we use interval(q) to represent an interval covering all the

breadth-first numbers of q’s children.

• For example, for Q shown in the following figure, we have

interval(q1) = [2, 3] and interval(q2) = [4, 5]. (If no confusion

will be caused, we will also use q and bf(q) interchangeably in

the following discussion.)

A q1

B q5q2 B

q3 C C q4

Q: 1

2 3

4 5

A q1

B q5q2 B

q3 C C q4

Q: interv[q1] = [2, 3]

5

interv[q2] = [4, 5]

interv[q5] = 

interv[q3] = , interv[q4] = 

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 57

A q1

B q5q2 B

q3 C C q4

Q: 1

2 3

4 5

A q1

B q5q2 B

q3 C C q4

Q: <1, [2, 3], 1, 7, 1>

5

<2, [4, 5], 2, 5, 2>

<3, , 6, 6, 2>

<4, , 3, 3, 3> <5, , 4, 4, 3>

g(q) = <bf(q), interval(q), LeftPos(q), RightPos(q), LevelNum(q)>,

Next, we associate each q with a tuple:

as shown in the following figure.

These tuples can be generated in O(|Q|) time and used to facilitate

the computation.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 58

Linked list of quadruples

• When checking the tree embedding of Q in T’, we will associate

each generated node v in T’ with a linked list Av to record what

subtrees in Q can be embedded in T’[v].

• For this purpose, the intervals associated with query nodes will

be used.

• Each entry in Av is a quadruple e = (q, interval, L, R), where q is

a node in Q, interval = [a, b]  interval(q) (for some a  b),

L = LeftPos(a) and R = RightPos(b). Here, we use a and b to refer

to the nodes with the breadth-first numbers a and b, respectively.

• An entry e = (q, [a, b], L, R) in Av indicates that the subtrees rooted

respectively at a, a + 1, …, b can be embedded in T’ [v].

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 59

q

… … …

a b

A quadruple associated with a node v in T represents a set of subtrees

(in Q[q]) rooted respectively at a, a + 1, ..., b (i.e., a set of subtrees

rooted at a set of consecutive breadth-first numbers) which can be

embedded in T[v].

quadruple: e = (q, interval, L, R)

Evaluation of Tree Pattern Queries

Jan. 2023

Yangjun Chen ACS-7102 60

Before we discuss how such entries in Av’s are generated, we first specify

two conditions, which must be satisfied by them. We say, a query node q is

subsumed by a pair (L, R) if L  LeftPos(q) and R  RightPos(q).

i) For any two entries e1 and e2 in Av, e1.q is not subsumed by (e2.L, e2.R),

nor is e2.q subsumed by (e1.L, e1.R). In addition, we require that if

e1.q = e2.q, e1.interval  e2.interval and e2.interval  e1.interval.

ii) For any two entries e1 and e2 in Av with e1.interval = [a, b] and

e2.interval = [a’, b’], if e1 appears before e2, then

RightPost(e1.q) < RightPost(e2.q) or

RightPost(e1.q) = RightPost(e2.q) but a < a’.

A q1

B q5
q2 B

q3 C C q4

Q: <1, [2, 3], 1, 7, 1>

<2, [4, 5], 2, 5, 2> <3, , 6, 6, 2>

<4, , 3, 3, 3> <5, , 4, 4, 3>

q2 [4, 5] 3 4e1

q1 [3, 3] 6 6e3

q1 [2, 2] 2 5e2

This one should

be removed.

e2 before e3.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 61

• Condition (i) is used to avoid redundancy due to the following

lemma.

Lemma 1 Let q be a node in Q. Let [a, b] be an interval. If q is

subsumed by (LeftPos(a), RightPos(b)), then there exists an integer

0  i  b - a such that bf(q) is equal to a + i or q is an descendant of

a + i.

Proof. The proof is trivial.

So Av keeps only quadruples which represent pairwise non-covered

subtrees by imposing condition (i).

• Condition (ii) is met if the nodes in Q are checked along their

increasing RightPos values. It is because in such an order the

parents of the checked nodes must be non-decreasingly sorted

by theiRightPos values.

Since we explore Q bottom-up, condition (ii) is always satisfied.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 62

q2 [4, 5] 3 4e1’

q1 [3, 3] 6 6e3’

A v4
:

q1 [2, 2] 2 5e2’ q1 [3, 3] 6 6

q1 [2, 2] 2 5

A v4
:

q2 [4, 4] 3 3e1

q2 [5, 5] 4 4e2

Av5
:

A q1

B q5
q2 B

q3 C C q4

Q:

<1, [2, 3], 1, 7, 1>

<2, [4, 5], 2, 5, 2>

<3, , 6, 6, 2>

<4, , 3, 3, 3>

A v1

B v8v2 B

v3 C B v4

v5 C v6 C

T’: {q1}

{q2, q5} {q2, q5}

{q2, q5}{q3, q4}

{q3, q4} {q3, q4}

Av6 is the same as Av5
.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 63

• The first linked list is created for v5 in T’ when it is generated and

checked against q3 and q4 in Q. Since both q3 and q4 are leaf nodes,

T’[v5] is able to embed either Q[q3] or Q[q4] and so we have two

entries e1 and e2 in A . Note that bf(q3) = 4 and bf(q3) = 5. In

addition, each of them is a child of q2. Thus, we have e1.q = e2.q = q2.

v5

A q1

B q5
q2 B

q3 C C q4

Q:

<1, [2, 3], 1, 7, 1>

<2, [4, 5], 2, 5, 2>

<3, , 6, 6, 2>

<4, , 3, 3, 3>

<5, , 4, 4, 3>

A v1

B v8v2 B

v3 C B v4

v5 C v6 C

T’: {q1}

{q2, q5} {q2, q5}

{q2, q5}{q3, q4}

{q3, q4} {q3, q4}

q2 [4, 4] 3 3e1

q2 [5, 5] 4 4e2

Av5
:

Av6 is the same as Av5 .

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 64

• The linked list for v4 contains three entries e1’, e2’ and e3’. Special

attention should be paid to e1’. Its interval is [4, 5], showing that

T’[v4] is able to embed both Q[q3] and Q[q4]. In this case, e1’.L is

set to 3 and e1’.R to 4.

• Since e1’.q = q2 is subsumed by (e2’.L, e2’.R) = (2, 5), the entry

will be removed, as shown by the third linked list.

q2 [4, 5] 3 4e1’

q1 [3, 3] 6 6e3’

A v4
:

q1 [2, 2] 2 5e2’ q1 [3, 3] 6 6

q1 [2, 2] 2 5

A v4
:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 65

With the linked lists associated with the nodes in T’, the embedding

of a subtree Q[q] in T’[v] can be checked very efficiently by running

the following procedure.

In the above process, we search both T’ and Q bottom-up; and for each

encountered pair (v, q) we check whether Q[q] can be embedded in T’[v]

by using the linked lists associated with v’s children. The results of the

checking is then recorded in the linked list associated with v.

Main Algorithm

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 66

While the above general process is straightforward, it is very

challenging to manipulate Av’s efficiently. In the following, we

elaborate this process.

First, we define a simple operation over two intervals [a, b] and

[a’, b’], which share the same parent:

[a, b]  [a’, b’] =

[a, b’],

undefined,

If a  a’  b + 1, b  b’;

otherwise.

q2 [4, 4] 3 3e1

q2 [5, 5] 4 4e2

Av5
:

q2 [4, 4] 3 3e1’

q2 [5, 5] 4 4e2’

Av6
:

q2 [4, 5] 3 4

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 67

The general operation to merge two linked list is described below.

1. Let A1 and A2 be two linked list associated with the first two child nodes of a

node v in T’, which is being checked against q with label(v) = label(q).

2. Scan both A1 and A2 from the beginning to the end. Let e1 (from A1) and e2

(from A2) be the entries encountered. We will perform the following checkings.

- If RightPos(e2.q) > RightPos(e1.q), e1  next(e1).

- If RightPos(e2.q) < RightPos(e1.q), then e2’  e2; insert e2’

into A1 just before e1; e2  next(e2).

- If RightPos(e2.q) = RightPos(e1.q), then we will compare the intervals

in e1 and e2. Let e1.interval = [a, b]. Let e2.interval = [a’, b’].

If a’ > b + 1, then e1  next(e1).

If a  a’  b + 1 and b  b’, then replace e1.interval with [a, b]  [a’, b’]

in A1; e1.RightPost  RightPos(b’); e1  next(e1); e2  next(e2).

If [a’, b’]  [a, b], then e2  next(e2).

If a’ < a, then e2’  e2; insert e2’ into A1 just before e1; e2  next(e2).

3. If A1 is exhausted, all the remaining entries in A2 will be appended to the end

of A1.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 68

• The result of the above process is stored in A1, denoted as

merge(A1, A2).

• We further define

merge(A1, ..., Ak) = merge(merge(A1, ..., Ak-1), Ak),

where A1, ..., Ak are the linked lists associated with v’s child

nodes: v1, ..., vk, respectively.

If in merge(A1, ..., Ak) there exists an e such that e.interval =

interval(q), T’[v] embeds Q[q].

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 69

• For the merging operation described above, we require that the

entries in a linked list are sorted. That is, all the entries e are in the

order of increasing RightPos(e.q) values; and for those entries with

the same RightPos(e.q) value their intervals are ‘from-left-to-right’

ordered.

• Such an order is obtained by searching Q bottom-up (or say, in the

order of increasing RightPos values) when checking a node v in T’

against the nodes in Q. Thus, no extra effort is needed to get a sorted

linked list.

• Moreover, if the input linked lists are sorted, the output linked

lists must also be sorted.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 70

Algorithm tree-embedding(L(Q))

Input: all data streams L(Q).

Output: Sv’s, which show the tree embedding.

begin

1. repeat until each L(q) in L(Q) become empty

2. {identify q such that the first element v of L(q) is of the minimal

RightPos value; remove v from L(q);

3. generate node v; Av  ;

4. let v1, ..., vk be the children of v.

5. B  merge(, ...,);

6. for each q  q do { (*nodes in q are sorted.*)

7. if q is a leaf then {Sv  Sv  {q}; }

8. else (*q is an internal node.*)

Av1 Avk

L(q1) - A:

(1, 1, 11, 1) v1

L({q3,q4}) - C:

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

L({q2, q5}) - B:

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 71

9. {if there exists e in B such that e.interval = interval(q)

10. then Sv  Sv  {q}; }

11.}

12. for each q  Sv do {

13. append (q’s parent, [bf(q), bf(q)], q.LeftPos, q.RightPos) to the

end of Av;}

14. Av  merge(Av, B); Scan Av to remove subsumed entries;

15. remove all ’s; }

16.}

end

Avi

In the above algorithm, left-sibling links should be generated to

reconstruct a tree structure as in the algorithm matching-tree-

construction(). However, such technical details are omitted for

simplicity.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 72

• In Algorithm tree-embedding(), the nodes in T’ is created one by

one as done in Algorithm matching-tree-construction().

• But for each node v generated for an element from a L(q), we will

first merge all the linked lists of their children and store the output

in a temporary variable B (see line 5).

• Then, for each q  q, we will check whether there exists an entry e

such that e.interval = interval(q) (see lines 8 - 9). If it is the case,

we will construct an entry for q and append it to the end of the

linked list Av (see lines 12 - 13).

• The final linked list for v is established by executing line 14.

• Afterwards, all the ’s (for v’s children) will be removed since

they will not be used any more (see line 15).

Avi

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 73

Finally, we point out that the above merging operation can be used

only for the case that Q contains no /-edges. In the presence of both

//-edges and /-edges, the linked lists should be slightly modified as

follows.

i) Let qj be a /-child of q with bf(qj) = a. Let Ai be a linked list

associated with vi (a child of v) which contains an entry e with

e.interval = [c, d] such that c  a and a  d.

ii) If label(qj) = label(vi) and vi is a /-child of v, e needn’t be changed.

Otherwise, e will be replaced with two entries:

- (e.q, [c, a - 1], LeftPos(c), LeftPos(a - 1)), and

- (e.q, [a + 1, d], LeftPos(a + 1), LeftPos(d)).

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 74

Example.

The data streams are sorted by (DocID, RightPos).

A q1

B q5q2 B

q3 C C q4

{v1}

{v4, v2, v8} {v4, v2, v8}

{v3, v5, v6} {v3, v5, v6}

Q:

v3

C C C{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

v3 C

C C

{q3, q4}

v6

B
v4

L(q1) - A:

(1, 1, 11, 1) v1

L({q3,q4}) - C:

(1, 3, 3, 3) v3

(1, 5, 5, 4) v5

(1, 6, 6, 4) v6

L({q2, q5}) - B:

(1, 4, 8, 3) v4

(1, 2, 9, 2) v2

(1, 10, 10, 2) v8

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 75

v3

C C C{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

v3

C

C C

{q3, q4}

v5
{q3, q4}

{q3, q4}
v6

B
{q2, q5}

v4

q2 [4, 4] 3 3

q2 [5, 5] 4 4

Av3
:

q2 [4, 4] 3 3

q2 [5, 5] 4 4

Av5
:

q2 [4, 4] 3 3

q2 [5, 5] 4 4

Av6
:

q2 [4, 5] 3 3

q2 [5, 5] 4 4

q1 [2, 2] 2 5

q1 [3, 3] 6 6

Av4
:

q2 [4, 4] 3 3

q2 [5, 5] 4 4

q1 [2, 2] 2 5

q1 [3, 3] 6 6

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 76

Proposition Algorithm tree-embedding() computes the entries in

Av’s correctly.

Proof. We prove the proposition by induction on the heights of

nodes in T’. We use h(v) to represent the height of node v.

Basic step. It is clear that any node v with h(v) = 0 is a leaf node.

Then, each entry in Av corresponds to a leaf node q in Q with

label(v) = label(q). Since all those leaf nodes in Q are checked in

the order of increasing RightPos values, the entries in Av must be

sorted.

Induction step. Assume that for any node v with h(v)  l, the

proposition holds. We will check any node v with h(v) = l + 1.

Let v1, ..., vk be the children of v. Then, for each vi (i = 1, ..., k),

we have h(vi)  l. In terms of the induction hypothesis, each is

correctly constructed and sorted. Then, the output of merge(,

...,) is sorted.

Av

1
Avk

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 77

If there exists an e such that e.interval = interval(q) for some q with

label(v) = label(q), an entry for q will be constructed and appended

to the end of Av. Again, since the nodes in Q are checked in the

order of increasing RightPos values, Av must be sorted. So

merge(Av, merge(, ...,)) is correctly constructed and sorted.Av1
Avk

Time Complexity

Now we analyze the time complexity of the algorithm. First, we

see that for each node v in T’, dv merging operations will be

conducted, where dv is the outdegree of v. The cost of a merging

operation is bounded by O(leafQ) since the length of each linked

list Av associated with a node v in T’ is bounded by O(leafQ)

according to the following analysis. Consider two nodes q1 and q2

on a path in Q, if both Q[q1] and Q[q2] can be embedded in T’[v],

Av keeps only one entry for them.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 78

If q1 is an ancestor of q2, then Av contains only the entry for q1

since embedding of Q[q1] in T’[v] implies the embedding of Q[q2]

in T’[v]. Otherwise, Av keeps only the entry for q2. Obviously, Q

can be divided into exactly leafQ root-to-leaf paths. Furthermore,

the merge of two linked lists A1 and A2 takes only O(max{|A1|,

|A2|}) time since both A1 and A2 are sorted lists according to the

proof of above Proposition. (It works in a way similar to the sort

merge join.) Therefore, the cost for generating all the linked lists is

bounded by

O(|T’|leafQ)

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 79

In addition, for each node v taken from a L(q), each q in q will be

checked (see line 6 in Algorithm tree-embedding().) This part of

checking can be slightly improved as follows. Let L(q) = {q1, ..., qk}.

Each qj (j = 1, ..., k) is associated with an interval [aj, bj]. Since qj’s

are sorted by RightPos values, we can check B (= merge(, ...,))

against q in one scanning to find, for each qj, whether there is an

interval in B, which is equal to [aj, bj]. This process needs only

O(|B| + |q|) time. So the total cost of this task is bounded by

O(|T’|leafQ) + O(|D||Q|).

Av1
Avk

Proposition The time complexity of Algorithm tree-embedding()

is bounded by O(|T’|leafQ) + O(|D||Q|).

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 80

XB-Trees

• An XB-tree is a variant of B+-tree over a quadruple sequences.

In such an index structure, each entry in a page is a pair e =

(LeftPos, RightPos) (referred to as a bounding segment) such that

any entry appearing in the subtree pointed to by the pointer

associated with e is subsumed by e.

• All the entries in a page are sorted by their LeftPos value.

• In each page P of an XB-tree, the bounding segments may

partially overlap

• Each page has two extra data fields: P.parent and P.parentIndex.

P.parent is a pointer to the parent of P, and P.parentIndex is a

number i to indicate that the ith pointer in P.parent points to P.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 81

(1, 1, 9, 1)

(1, 2, 7, 2)

(1, 3, 3, 3)

(1, 4, 6, 3)

(1, 5, 5, 4)

(1, 8, 8, 2)

a data stream:

1, 9 3, 6 5, 8

3, 3 4, 61, 9 2, 7 5, 5 8, 8

P3.parentIndex = 2 since the second pointer in P1 (the parent of P3)

points to P3.

P1

P2 P3 P4

P.parentIndex

P.parent

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 82

• In a Q we may have more than one query nodes q1, ..., qk with

the same label.

• So they will share the same data stream and the same XB-tree.

For each qj (j = 1, ..., k), we maintain a pair (P, i), denoted ,

to indicate that the ith entry in the page P is currently accessed

for qj. Thus, each (j = 1, ..., k) corresponds to a different

searching of the same XB-tree as if we have a separate copy

of that XB-tree over B(qj).

qj

1. advance(q) (going up from a page to its parent): If q = (P, i) does

not point to the last entry of P, i  i + 1. Otherwise,

q  (P.parent, P.parentIndex + 1).

2. drilldown(q) (going down from a page to one of its children):

If q = (P, i) and P is not a leaf page, q  (P’, 1), where P’ is

the ith child page of P.

Two operations for navigating XB-trees:

qj

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 83

• Initially, for each q, q points to (rootPage, 0), the first entry in

the root page.

• We finish a traversal of the XB-tree for q when q = (rootPage,

last), where last points to the last entry in the root page, and we

advance it (in this case, we set q to , showing that the XB-tree

over B(q) is exhausted.)

• The entries in B(q)’s will be taken from the corresponding XB-

tree; and many entries can be possibly skipped. Again, the entries

taken from XB-trees will be reordered as shown in Algorithm

stream-transformation().

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 84

Remember that in the previously discussed algorithms, the document

tree nodes are taken from B(q)’s one by one. Now we will take the

tree nodes from the corresponding XB-trees. To do this, we will

search Q top-down. Each time we determine a q ( Q), for which an

entry from B(q) (i.e., the corresponding XB-tree) is taken, the

following three conditions are satisfied:

i) For q, there exists an entry vq in B(q) such that it has a

descendant in each of the streams B(qi) (where qi is a child of

q.)

ii) Each recursively satisfies (i).

iii) LeftPos(vq) is minimum.

vqi

vqi

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 85

isLeaf(q) - returns true if q is a leaf node of Q; otherwise, false.

currL(q) - returns the leftPos of the entry pointed to by q.

currR(q) - returns the rightPos of the entry pointed to by q.

isPlainValue(q) - returns true if q is pointing to a leaf node in the

corresponding XB-tree.

end(Q) - if for each leaf node q of Q q =  (i.e., B(q) is exhausted),

then returns true; otherwise, false.

In function getNext(q), the following operations are used:

getNext(q) returns q’, but its goal is to figure out q’ by using

the XB-tree.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 86

Function getNext(q) (*Initially, q is the root of Q.*)

begin

1. if (isLeaf(q)) then return q;

2. for each child qi of q do

3. {ri  getNext(qi);

4. if (ri  qi  ¬isPlainValue(ri) then return ri; }

5. qmin  q’’ such that currL(q’’) = mini{currL()};

6. qmax  q’’’ such that currL(q’’’) = maxi{currL()};

7. while (currR(q) < currL() do advance(q);

8. if (currL(q) < currL() then return q;

9. else return qmin; }

end

 rj

ri

qmax

qmin

When ri  qi , we will return ri since q cannot satisfy condition (i)

(see line 9).

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 87

The goal of the above function is to figure out a query node to

determine what entry from data streams will be checked in a next

step, which has to satisfy the above conditions (i) - (iii).

• Lines 7 – 9 are used to find a query node satisfying condition (i)

(see the figure for illustration of line 7.)

• The recursive call performed in line 3 shows that condition (ii) is

met.

• Since each XB-tree is navigated top-down and the entries in

each node is scanned from left to right, condition (iii) must be

always satisfied.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 88

q

qmin

T: Q:

If currR(q) < currL(), we have to advance q.qmin

q

qmin

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 89

Algorithm tree-embeddingXB(Q)

• Once a q  Q is returned, we will further check q. If it is an

entry in a leaf node in the corresponding XB-tree, insert it into

stack ST (see Algorithm stream-transformation().) Otherwise,

we will do advance(q) or drilldown(q), according to the

relationship between q and the nodes stored in ST.

• We associate each q  Q with an extra linked list, denoted linkq,

such that each entry in it contains a pointer to a node v stored in

ST with label(v) = label(q). We append entries to the end of a

linkq one by one as the document nodes are inserted into ST, as

illustrated in the following figure. The last entry in linkq is

denoted a linkq,last

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 90

…

…

linkq:

ST:

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 91

Algorithm tree-embeddingXB(Q)

begin

1. while (end(Q)) do

2. {q  getNext(root-of-Q);

3. if (isPlainValue(q) then

4. {let v be the node pointed to by q;

5. while ST is not empty and ST.top is not v’s ancestor do

6. {x  ST.pop(); Let x = (q’, u); (*a node for u will be

created.*)

7. call embeddingCheck(q’, u); }

8. ST.push(q, v); advance(q);

9. }

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 92

10. else if (isRoot(q)  linkq  

 currR(q) < LeftPos(linkq,last)

11. then advance(q) (*not part of a solution*)

12. else drilldown(q); (*may find a solution.*)

}

end

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 93

parent(q)

q

T: Q:

parent(q)

q

In the above algorithm, we distinguish between two cases. If q is an

entry in a leaf node in the corresponding XB-tree, we will insert it

into ST. Otherwise, lines 10 - 12 will be carried out. If currR(q) <

LeftPos(linkparent(q),last), we have a situation as illustrated in the

following figure. In this case, we will advance q (see line 11.) If it

is not the case, we will drill down the corresponding XB-tree

(see line 12) since a solution may be found.

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 94

Algorithm postorder(T,v):

for each child w of v

call postorder(T,w)

perform the “visit” action for node v

v

w

postorder(T,v)

postorder(T,w)

Appendix – bottom-up tree searching

Evaluation of Tree Pattern Queries

Jan. 2023 Yangjun Chen ACS-7102 95

Postorder traversal using Stack

Algorithm stack-postorder(T, v)

establish stack S;

S.push(v)

while (S in not empty) do {

u := S.top();

if (u is leaf or marked) then {visit u; S.pop();}

else mark the top element of S;

let u1, u2, …, un be the children of u;

for (j = n; j >= 1; j--) S.push(uj);

}

}

