Elementary Graph Algorithms

- Graph representation
- Graph traversal
- Breadth-first search
- Depth-first search
- Parenthesis theorem

Graphs

- Graph $G=(V, E)$
» $V=$ set of vertices
$» E=$ set of edges $\subseteq(V \times V)$
- Types of graphs
» Undirected: edge $(u, v)=(v, u)$; for all $v,(v, v) \notin E$ (No self loops.)
» Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
» Weighted: each edge has an associated weight, given by a weight function $w: E \rightarrow \mathbf{R}$.
» Dense: $|E| \approx|V|^{2}$.
» Sparse: $|E| \ll|V|^{2}$.
- $|E|=O\left(|V|^{2}\right)$

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
» Symmetric if G is undirected.
» Not necessarily so if G is directed.
- If G is connected:
» There is a path between every pair of vertices.
» $|E| \geq|V|-1$.
» Furthermore, if $|E|=|V|-1$, then G is a tree.
- Other definitions in Appendix B (B. 4 and B.5) as needed.

Representation of Graphs

- Two standard ways.
» Adjacency Lists.

» Adjacency Matrix.

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V, \operatorname{Adj}[u]$ consists of all vertices adjacent to u.
 adjacency lists.

Storage Requirement

- For directed graphs:
» Sum of lengths of all adj. lists is

$$
\sum_{v \in V} \text { out-degree }(v)=|E|
$$

» Total storage: $\Theta(|V|+|E|)$

- For undirected graphs:
» Sum of lengths of all adj. lists is

$$
\sum \text { degree }(v)=2|E|
$$

$$
v \in V \quad \text { No. of edges incident on } v \text {. Edge }(u, v) \text { is incident }
$$

» Total storage: $\Theta(|V|+|E|)$

Pros and Cons: adj list

- Pros
» Space-efficient, when a graph is sparse.
» Can be modified to support many graph variants.
- Cons
» Determining if an edge $(u, v) \in \mathrm{G}$ is not efficient.
- Have to search in u 's adjacency list. $\Theta($ degree $(u))$ time.
- $\Theta(V)$ in the worst case.

Adjacency Matrix

- $|V| \times|V|$ matrix A.
- Number vertices from 1 to $|V|$ in some arbitrary manner.
- A is then given by:

$$
A[i, j]=a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

	1	2	3	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

$A=A^{\mathrm{T}}$ for undirected graphs.

Space and Time

- Space: $\Theta\left(V^{2}\right)$.
» Not memory efficient for large graphs.
- Time: to list all vertices adjacent to $u: \Theta(V)$.
- Time: to determine if $(u, v) \in E: \Theta(1)$.
- Can store weights instead of bits for weighted graph.

Graph-searching Algorithms

- Searching a graph:
» Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
» Breadth-first Search (BFS).
» Depth-first Search (DFS).

Breadth-first Search

- Input: Graph $G=(V, E)$, either directed or undirected, and source vertex $s \in V$.
- Output:
»d[v] = distance (smallest \# of edges, or shortest path) from s to v, for all $v \in V . d[v]=\infty$ if v is not reachable from s.
$» \pi[v]=u$ such that (u, v) is last edge on shortest path $s \sim v$.
- u is v 's predecessor.
» Builds breadth-first tree with root s that contains all reachable vertices.

```
Definitions:
Path between vertices }u\mathrm{ and v: Sequence of vertices ( }\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{k}{})\mathrm{ such that
u=\mp@subsup{v}{1}{}}\mathrm{ and }v=\mp@subsup{v}{k}{}\mathrm{ , and ( }\mp@subsup{v}{i}{},\mp@subsup{v}{i+1}{})\inE\mathrm{ , for all }1\leqi\leqk-1
Length of the path: Number of edges in the path.
Path is simple if no vertex is repeated.
```


Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
" A vertex is "discovered" the first time it is encountered during the search.
" A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
» White - Undiscovered.
» Gray - Discovered but not finished.
» Black - Finished.

```
BFS(G,s)
1. for each vertex u in V[G] - {s}
lc
    color[s]}\leftarrow\mathrm{ gray
    d}[s]\leftarrow
    \pi[s]}\leftarrow\mathrm{ nil
    Q\leftarrow\Phi
    enqueue(Q,s)
    10 while Q Q = Ф
11 do u }\leftarrow\mathrm{ dequeue(Q)
12 for each v}\mathrm{ in }\operatorname{Adj[}[u
do if color[v] = white
    then color[v] \leftarrow gray
    d[v]}\leftarrowd[u]+
    \pi[v]}\leftarrow
    enqueue(Q,v)
    color[u] \leftarrow black
```

white: undiscovered gray: discovered black: finished
$Q:$ a queue of discovered vertices
color[v]: color of v
$\mathrm{d}[\nu]$: distance from s to v $\pi[u]$: predecessor of v

Example (BFS)

Q: $\begin{array}{r}\text { s } \\ 0 \\ \hline\end{array}$

Example (BFS)

Q: wr | | r |
| ---: | :--- |
| | 1 |

Example (BFS)

$$
Q: \begin{array}{lll}
r & t & x \\
1 & 2 & 2
\end{array}
$$

Example (BFS)

Q: | | x | v |
| ---: | :--- | :--- |
| 2 | 2 | 2 |

graphs-1-18

Example (BFS)

$$
\text { Q: } \begin{array}{rll}
x & v \\
2 & 2 & 3
\end{array}
$$

Example (BFS)

Q: $\begin{array}{rll}\text { v } & u & y \\ 2 & 3 & 3\end{array}$

Example (BFS)

Q: u y

Example (BFS)

Q: y

Example (BFS)

Q: \varnothing

Example (BFS)

BF Tree

Analysis of BFS

- Initialization takes $O(|V|)$.
- Traversal Loop
» After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(|V|)$.
» The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(|E|)$.
- Summing up over all vertices => total running time of BFS is $O(|V|+|E|)$, linear in the size of the adjacency list representation of graph.
- Correctness Proof
» We omit for BFS and DFS.
» Will do for later algorithms.

Breadth-first Tree

- For a graph $G=(V, E)$ with source s, the predecessor subgraph of G is $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ where
» $V_{\pi}=\{v \in V: \pi[v] \neq n i l\} \cup\{s\}$
$» E_{\pi}=\left\{(\pi[v], v) \in E: v \in V_{\pi}-\{s\}\right\}$
- The predecessor subgraph G_{π} is a breadth-first tree if:
» V_{π} consists of the vertices reachable from s and
" for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called tree edges. $\left|E_{\pi}\right|=\left|V_{\pi}\right|-1$.

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Depth-first Search

- Input: $G=(V, E)$, directed or undirected. No source vertex given!
- Output:
» 2 timestamps on each vertex. Integers between 1 and $2|\mathrm{~V}|$.
- $d[v]=$ discovery time (v turns from white to gray)
- $f[v]=$ finishing time (v turns from gray to black)
» $\pi[v]$: predecessor of $v=u$, such that v was discovered during the scan of u 's adjacency list.
- Coloring scheme for vertices as BFS. A vertex is
»"discovered" the first time it is encountered during the search.
" A vertex is "finished" if it is a leaf node or all vertices adjacent to it have been finished.

Pseudo-code

DFS(G)

1. for each vertex $u \in V[G]$
2. do color $[u] \leftarrow$ white
3. $\pi[u] \leftarrow$ NIL
4. time $\leftarrow 0$
5. for each vertex $u \in V[G]$
6. do if $\operatorname{color}[u]=$ white
7. then DFS-Visit (u)

Uses a global timestamp time.

$$
\begin{array}{lc}
\text { DFS-Visit }(u) \\
\text { 1. } & \text { color }[u] \leftarrow \text { GRAY // White vertex } u \\
\text { has been discovered } \\
\text { 2. } & \text { time } \leftarrow \text { time }+1 \\
\text { 3. } & d[u] \leftarrow \text { time } \\
\text { 4. } & \text { for each } v \in \text { Adj }[u] \\
\text { 5. } & \text { do if } \operatorname{color}[v]=\text { WHITE } \\
\text { 6. } & \text { then } \pi[v] \leftarrow u \\
\text { 7. } & \text { DFS-Visit }(v) \\
\text { 8. } & \text { color }[u] \leftarrow \text { BLACK // Blacken } u ; \\
9 . & f[u] \leftarrow \text { time } \leftarrow \text { time }+1
\end{array}
$$

Example (DFS)

Analysis of DFS

- Loops on lines 1-2 \& 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFSVisit is executed $|\operatorname{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V}|\operatorname{Adj}[v]|=\Theta(E)$
- Total running time of DFS is $\Theta(|V|+|E|)$.

Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. $d[u]<f[u]<d[v]<f[v]$ or $d[v]<f[v]<d[u]<f[u]$ and neither u nor v is a descendant of the other.
2. $d[u]<d[v]<f[v]<f[u]$ and v is a descendant of u.
3. $d[v]<d[u]<f[u]<f[v]$ and u is a descendant of v.

- So $d[u]<d[v]<f[u]<f[v]$ cannot happen.
- Like parentheses:
- OK: () [](%5B%5D)[()]
- Not OK: ([)][(])

Corollary
v is a proper descendant of u if and only if $d[u]<d[v]<f[v]<f[u]$.

Example (Parenthesis Theorem)

$(s(z(y(x) y)(w w) z)(t(v v)(u u) t)$

Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi}=\left(V, E_{\pi}\right)$ where $E_{\pi}=\{(\pi[v], v): v \in V$ and $\pi[v] \neq$ nil $\}$.
» How does it differ from that of BFS?
» The predecessor subgraph G_{π} forms a depth-first forest composed of several depth-first trees. The edges in E_{π} are called tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.

White-path Theorem

Theorem 22.9

v is a descendant of u in $D F$-tree if and only if at time $d[u]$, there is a path $u \sim \Delta v$ consisting of only white vertices. (Except for u, which was $j u s t$ colored gray.)

Classification of Edges

- Tree edge: in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges.
No forward or cross edges.

