X

A\ Finding Regular Simple Paths

N

Finding Regular Simple Paths
In Graph Databases

Basic definitions

Regular paths

Regular simple paths

An query evaluation algorithm

Jan. 2017 Yangjun Chen ACS-7102 1

Finding Regular Simple Paths

Example.

Let G be a graph describing a hypertext document:
Nodes — chucks of text

Edges — links (cross-references).

Readers read the document by following links.

Query: Is there a way to get from Section 3.1 to Section 5.2 and
then to the conclusion?

link* link*

Jan. 2017 Yangjun Chen ACS-7102 2

Finding Regular Simple Paths

Basic definitions
We model a graph database as a labeled directed graph
G=(V,E %, 0,

where V is a set of nodes,
E is a set of edges,
> Is a set of symbols, called the alphabet, and
@1s an edge labeling function mapping E to 2.

Jan. 2017 Yangjun Chen ACS-7102

Finding Regular Simple Paths

A regular path expression (or regular expression) is defined by the
following grammar:

a:=g|elal-[(By+B)| (BB B,

where a, B3, B;, and 3, denote regular path expressions,
a denotes a constant in 2,
“-” denotes a wildcard matching any constant in 2,
g denotes the empty set, and
¢ denotes the empty string.

Example: (00)*, 0*10%, 1*01*, 0%10* + 1*01*,

Jan. 2017 Yangjun Chen ACS-7102 4

Finding Regular Simple Paths

Basic definitions

The language L(a) (a set of strings) created from o is defined as
follows.

L(e) = {¢&}.

L(2) = @.

L(a) = {a}, fora e .

L(B, + B2) = L(By) W L(B) ={w|w e L(B,) or w e L(B,).
L(B1B2) = L(B)L(B2) = {w,w, [w; € L(B;) and w, € L(B,)}.
L(B") = Li-oL'(B), where LO(B) = {&} and L'(B) = L"(B)L(B).
Regular expressions a, and o, are equivalent, written o, = o,
If L(o;) = L(a,). The length of regular expression o, denoted |a,
IS the number of symbols appearing in .

Jan. 2017 Yangjun Chen ACS-7102 5

Finding Regular Simple Paths

Basic definitions
A nondeterministic finite automaton (NDFA) M is a 5-tuple

(81 2: 61 SO1 F)1

where 1. S is the finite set of states of the control.
2. 2'1s the alphabet from which input symbols are chosen.
3. 0 Is the state transition function which maps S x (2'u {&})

to the set of subsets of S.
4.s,1n S is the initial state of the finite control.

Jan. 2017 Yangjun Chen ACS-7102 6

Finding Regular Simple Paths

5. F < Sis the set of finite (or accepting) states.

Associated with an NDFA Is a directed graph, in which
each node stands for a state in the NDFA, and
each edge (s, s°) labeled with a symbol a in 2 for a state transit
o(s, a) which contains s

The extended transition function &~ is defined as follows.
e Letsandtbetwo states in S.

e Forae 2, andw e 2", 6°(S, ¢) ={s}, and
07(S, Wa) = Uy gx(s Ot Q).

Jan. 2017 Yangjun Chen ACS-7102 7

Finding Regular Simple Paths

Basic definitions

An NDFAM = (S, %, 8, sy, F) acceptsw € 27 if 5°(Sp, W) N F #
a.

The language L(M) accepted by M is the set of all strings
accepted by M.

A deterministic finite automaton (DFA) Is a nondeterministic
finite automaton (S, I, 9, sy, F) with the following conditions
satisfied:

1. o(s, &) = gforalls € S, and
2. Each state has 1 or O successor.

Jan. 2017 Yangjun Chen ACS-7102 8

Finding Regular Simple Paths

Simple paths

* Let X be a finite alphabet disjoint from {e, ¢, (,)}.
« Avregular expression R over £ and the language L(R) denoted by

R are defined in the usual way.

 LetG=(V,E, %, 6 beadb-graphandp = (v, e, ..., €1, Vi),
wherev; e N,1<i1<n,ande; € E,1<j<n, beapathinG.

* We say p is a simple path if all the v;’s are distinct for 1 <1 <n.
We call the string

ae,) ... Ae,,)
the path label of p, denoted by Ap) Z*.

Jan. 2017 Yangjun Chen ACS-7102 9

Finding Regular Simple Paths

Let R be a regular expression over .

We say that the path p satisfies R if &p) € L(R). The query Qg
on db-graph G, denoted by Qx(R), Is defined as the set of pairs (X, y)
such that there is a simple path from x to y in G which satisfies R.

If (X, y) € Qr(R), then (X, y) satisfies Q.

Jan. 2017 Yangjun Chen ACS-7102 10

Finding Regular Simple Paths

Regular simple path Problem

Instance: db-graph G = (V, E, X, 60),
nodes X, y € N, regular expression
R over .

Question: Does G contain a directed simple path

P= (V1 €1 oos €ngs Vi)

from x to y such that p satisfies R, that is,

aey) ... Aenq) = Ap) € LR)?

Jan. 2017 Yangjun Chen ACS-7102 11

Finding Regular Simple Paths

Naive method

A naive method for evaluating a query Qg on a db-graph G is to
traverse every simple path satisfying R in G exactly once.

The penalty for this is that such an algorithm takes exponential time
when G has an exponential number of simple paths.

Jan. 2017 Yangjun Chen ACS-7102 12

Finding Regular Simple Paths

Intersection graph

Let M, = (S;, 2, 64, Pos Fp) and M, = (S,, %, 6, 4o, F,) be NDFAs.
The NDFAfor M; " M, is | = (S; x S,, 2, 0, (py, 0g), Fyx F,), where
forae %, (p;, qy) € 0 ((p5, 9,), @) If and only if p, € 6,(p,, @) and

q, € 0,(d;,). We call the transition graph of | the intersection graph
of M, and M.,

Regular path Problem

Instance: db-graph G = (V, E, %, 6), nodes x, y € V, regular expression
R over 2.

Question: Does G contain a directed path (not necessarily simple) p =
(Vy, €, ..., €54, V,y) from x to y such that p satisfies R, that is,

aey) ... Ae,q) = Ap) € L(R)?

Jan. 2017 Yangjun Chen ACS-7102 13

Finding Regular Simple Paths

Regular path Problem can be decided in polynomial time

* We view the db-graph G = (V, E, X, 6) as an NDFA with initial state
x and final state y.

* Construct the intersection graph 1 of Gand M = (S, %, 9, s, F), an
NDFA accepting L(R).

 There is a path from x to y satisfying R if and only if there is path in
| from (X, s) to (y, S;) for some s; € F.

« All this can be done in polynomial time.

Jan. 2017 Yangjun Chen ACS-7102 14

Finding Regular Simple Paths

Algorithm A

- Adb-graph G =(V, E, Z,) with nodes x, y € V. (We view G as
an NDFA with initial state x and final state y.)
- regular expression R over X.

Question: Does G contain a directed path (not necessarily simple)

P =(Vy, €, o) €ngs Vi)

from x to y such that p satisfies R, that is,

() ... &Xe, 1) = Ap) € L(R)?

Jan. 2017 Yangjun Chen ACS-7102 15

Finding Regular Simple Paths

Algorithm A

(1) ... Aeyra) = AP) € LR)?

1. Traverse simple paths in G, using a DFA M accepting L(R) to
control the search by marking nodes as they are visited.

2. Record with which state of M a node is visited. (We allow a node
to be visited with different states.)

3. A node with the same state cannot be visited more than once.

Jan. 2017 Yangjun Chen ACS-7102 16

Finding Regular Simple Paths

Incompleteness

Using the above algorithm, we may fail to find all the answers.

Example Consider a query Qg, Where R = aaa.

Jan. 2017 Yangjun Chen ACS-7102

17

Finding Regular Simple Paths

« Assume that we start traversal from node A in G, and follow the
path to B, C and D. Node A, B, C and D are marked with 0, 1, 2
and 3, respectively, and the answer (A, D) is found, since 3 is a
final state.

« |f we backtrack to node C, we cannot mark B with state 3 because
(A, B, C, B) Is a non-simple path. So we backtrack to A, and visit
D in state 1. However, if we have retained markings, we cannot
visit node C as it is already marked with state 2. Consequently,
the answer (A, B) is not found.

Jan. 2017 Yangjun Chen ACS-7102 18

Finding Regular Simple Paths

Suffix language

Definition Given an NDFAM = (§, %, o, S, F), for each pair of states
s, t € S, we define the language from s to t, denoted by L, as the set
of strings that take M from state s to state t. In particular, for a state

s € S, the suffix language of s, denoted by L ¢ (or [s]), Is the set of
strings that take M from s to some final state. Clearly, [s,] = L(M).
Similar definitions apply for a DFA.

Jan. 2017 Yangjun Chen ACS-7102 19

Finding Regular Simple Paths

Suffix language

Definition Let | be the intersection graph of a db-graph G and a DFA
M=(S, 2 9,s, F)accepting L(R). Assume that for nodes u and v In
G and states s, t € S, there are paths p from (u, s;,) to (v, s) and g from
(v,s)to (v, t) in | (that is, there is a cycle at v in G that satisfies L),
such that no first component of a node p or g repeats except for the
endpoints of g. In other words, p and g correspond to a simple path
and a simple cycle, respectively, in G. If [t] & [s], then we say there
IS a conflict between s and t at v. If there are no conflicts in I, then | is
said to be conflict-free, as are G and R.

Jan. 2017 Yangjun Chen ACS-7102 20

Finding Regular Simple Paths

Example

Consider the following M and G.

M: @L@L@%

Recall that, if markings were retained, the answer (A, B) would not
be found. However, there iIs a conflict. This is because node B in G
can be marked with state 1 and there is a cycle at B which satisfies

L5, but [3] < [1].

Jan. 2017 Yangjun Chen ACS-7102 21

Finding Regular Simple Paths

Algorithm B

(1) ... Aeyra) = AP) € LR)?

1. Traverse simple paths in G, using a DFA M accepting L(R) to
control the search by marking nodes as they are visited.

2. Record with which state of M a node is visited. (We allow a node
to be visited with different states.)

3. If no conflicts are detected, the algorithm retains markings,
while whenever a conflict arises, it unmarks nodes so that no
answers are lost.

4. A node with the same state cannot be visited more than once.

Jan. 2017 Yangjun Chen ACS-7102 22

Finding Regular Simple Paths

Algorithm B

Input: db-graph G = (V, E, 2,), query Q.
Output: Qg(G), the value of Q;on G.

Constructa DFAM = (S, 2, 9, Sy, F) accepting L(R).
Initialize Q(G) to &.

For each node v € V, set CM]v] to null and PM][v] to &.
Test [s] o [t] for each pair of states s and t.

For each nodev € V,

(a) call search-G(v, v, s,, conflict)

(b) reset PM[w] to & for any marked node w € V.

oF & W N =

Two types of markings:

CM|v] — used to indicate that v Is already on the stack
PM|[v] — a set of states, recording earlier markings of v, excluding the current path.

Jan. 2017 Yangjun Chen ACS-7102 23

Finding Regular Simple Paths

procedure search-G(u, v, s, var conflict)

6. conflict < false

7. CM|[v] «s

8. Ifs e Fthen Qg(G) « Qx(G) u {(u, v)}

9. foreach edge in G from v to w with label a do

10. If 5(s, a) =tand t ¢ PM[w] then

11. If CM[w] = g then conflict < ([t] « [q])

12. else /* CM[w] is null*/

13. search-G(u, w, t, new-conflict)

14. conflict «— conflict or new-conflict

15. CM[w] « null
16. if not conflict then PM[w] < PM[w] U {s}

Jan. 2017 Yangjun Chen ACS-7102 24

Finding Regular Simple Paths

Example

Let R = a((bc + &£)d + ec)) be the regular expression for query Q.
A DFA M accepting L(R) and a db-graph G are shown below.

Assume that we start by marking node A with state 0, after which
we proceed to mark B with 1, C with 2, and B with 3.
Since no edge labeled d leaves B, we backtrack to C and attempt to

visit B in state 3.
Jan. 2017 Yangjun Chen ACS-7102 25

Finding Regular Simple Paths

« Although B has already a current marking (CM[B] = 1), this is not a conflict
since [1] o [3].

» The algorithm now backtrack to B in state 1 and marks E with state 4.

« After backtracking again to B in state 1, the markings are given as in the above
figure.

» Next, the algorithm marks C with state 5 and D with 4.

« On backtracking to C and attempting to mark B with 4, a conflict is detected
since [4] « [1].

« S0 on backtracking to A, the markings 5 and 1 will be removed from C and B,
respectively.

Jan. 2017 Yangjun Chen ACS-7102 26

Finding Regular Simple Paths

* Now D is marked with 1, but since C has a previous marking of 2, that marking
will not be repeated. So C is marked with 5 (along another transit labeled with e

In M. 5 was previously removed.) After this, B can be marked with 4.

* When the algorithm backtracks to C and attempt to visit D, it discovers that D
was previously marked with 4, so no conflict is registered. The marking are now
given as shown below.

(4)
(3). (4), 1

Jan. 2017 Yangjun Chen ACS-7102 27

