
Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 1

Finding Regular Simple Paths

in Graph Databases

• Basic definitions

• Regular paths

• Regular simple paths

• An query evaluation algorithm

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 2

Example.

Let G be a graph describing a hypertext document:

Nodes – chucks of text

Edges – links (cross-references).

Readers read the document by following links.

Query: is there a way to get from Section 3.1 to Section 5.2 and

then to the conclusion?

Sec3.1 Sec5.2 Conc.
link+ link+

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 3

Basic definitions

We model a graph database as a labeled directed graph

G = (V, E, , ),

where V is a set of nodes,

E is a set of edges,

 is a set of symbols, called the alphabet, and

 is an edge labeling function mapping E to .

A

CB D

a a

a a

a a

0

3

2

1G:

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 4

A regular path expression (or regular expression) is defined by the

following grammar:

 := ø |  | a | - | (1 + 2) | (12) | 
*,

where , , 1, and 2 denote regular path expressions,

a denotes a constant in ,

“-” denotes a wildcard matching any constant in ,

ø denotes the empty set, and

 denotes the empty string.

Example: (00)*, 0*10*, 1*01*, 0*10* + 1*01*.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 5

Basic definitions

The language L() (a set of strings) created from  is defined as

follows.

L() = {}.

L(ø) = ø.

L(a) = {a}, for a  .

L(1 + 2) = L(1)  L(2) = {w | w  L(1) or w  L(2).

L(12) = L(1)L(2) = {w1w2 | w1  L(1) and w2  L(2)}.

L(*) = i=0L
i(), where L0() = {} and Li() = Li-1()L().

Regular expressions 1 and 2 are equivalent, written 1  2,

if L(1) = L(2). The length of regular expression , denoted ||,

is the number of symbols appearing in .

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 6

Basic definitions

A nondeterministic finite automaton (NDFA) M is a 5-tuple

(S, , , s0, F),

where 1. S is the finite set of states of the control.

2.  is the alphabet from which input symbols are chosen.

3.  is the state transition function which maps S  (  {})

to the set of subsets of S.

4. s0 in S is the initial state of the finite control.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 7

5. F  S is the set of finite (or accepting) states.

Associated with an NDFA is a directed graph, in which

each node stands for a state in the NDFA, and

each edge (s, s’) labeled with a symbol a in  for a state transit

(s, a) which contains s’.

The extended transition function * is defined as follows.

• Let s and t be two states in S.

• For a  , and w  *, *(s, ) = {s}, and

*(s, wa) = t*(s,w)(t, a).

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 8

Basic definitions

An NDFA M = (S, , , s0, F) accepts w  * if *(s0, w)  F 

ø.

The language L(M) accepted by M is the set of all strings

accepted by M.

A deterministic finite automaton (DFA) is a nondeterministic

finite automaton (S, I, , s0, F) with the following conditions

satisfied:

1. (s, ) =  for all s  S, and

2. Each state has 1 or 0 successor.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 9

Simple paths

• Let  be a finite alphabet disjoint from {, , (,)}.

• A regular expression R over  and the language L(R) denoted by

R are defined in the usual way.

• Let G = (V, E, , ) be a db-graph and p = (v1, e1, …, en-1, vn),

where vi  N, 1  i  n, and ej  E, 1  j  n, be a path in G.

• We say p is a simple path if all the vi’s are distinct for 1  i  n.

We call the string

(e1) … (en-1)

the path label of p, denoted by (p)  *.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 10

Let R be a regular expression over .

We say that the path p satisfies R if (p)  L(R). The query QR

on db-graph G, denoted by QR(R), is defined as the set of pairs (x, y)

such that there is a simple path from x to y in G which satisfies R.

If (x, y)  QR(R), then (x, y) satisfies QR.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 11

Regular simple path Problem

Instance: db-graph G = (V, E, , ),

nodes x, y  N, regular expression

R over .

Question: Does G contain a directed simple path

p = (v1, e1, …, en-1, vn)

from x to y such that p satisfies R, that is,

(e1) … (en-1) = (p)  L(R)?

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 12

Naïve method

A naïve method for evaluating a query QR on a db-graph G is to

traverse every simple path satisfying R in G exactly once.

The penalty for this is that such an algorithm takes exponential time

when G has an exponential number of simple paths.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 13

Intersection graph

Let M1 = (S1, , 1, p0, F1) and M2 = (S2, , 2, q0, F2) be NDFAs.

The NDFA for M1  M2 is I = (S1  S2, , , (p0, q0), F1  F2), where

for a  , (p1, q1)   ((p2, q2), a) if and only if p2  1(p1, a) and

q2  2(q1, a). We call the transition graph of I the intersection graph

of M1 and M2.

Regular path Problem

Instance: db-graph G = (V, E, , ), nodes x, y  V, regular expression

R over .

Question: Does G contain a directed path (not necessarily simple) p =

(v1, e1, …, en-1, vn) from x to y such that p satisfies R, that is,

(e1) … (en-1) = (p)  L(R)?

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 14

Regular path Problem can be decided in polynomial time

• We view the db-graph G = (V, E, , ) as an NDFA with initial state

x and final state y.

• Construct the intersection graph I of G and M = (S, , , s0, F), an

NDFA accepting L(R).

• There is a path from x to y satisfying R if and only if there is path in

I from (x, s0) to (y, sf) for some sf  F.

• All this can be done in polynomial time.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 15

Algorithm A

- A db-graph G = (V, E, , ) with nodes x, y  V. (We view G as

an NDFA with initial state x and final state y.)

- regular expression R over .

Question: Does G contain a directed path (not necessarily simple)

p = (v1, e1, …, en-1, vn)

from x to y such that p satisfies R, that is,

(e1) … (en-1) = (p)  L(R)?

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 16

Algorithm A

(e1) … (en-1) = (p)  L(R)?

1. Traverse simple paths in G, using a DFA M accepting L(R) to

control the search by marking nodes as they are visited.

2. Record with which state of M a node is visited. (We allow a node

to be visited with different states.)

3. A node with the same state cannot be visited more than once.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 17

Incompleteness

Using the above algorithm, we may fail to find all the answers.

Example Consider a query QR, where R = aaa.

0
a

1 2 3
a a

A

CB D

a a

a a

a a

0

3

2

1

M:

G:

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 18

• Assume that we start traversal from node A in G, and follow the

path to B, C and D. Node A, B, C and D are marked with 0, 1, 2

and 3, respectively, and the answer (A, D) is found, since 3 is a

final state.

• If we backtrack to node C, we cannot mark B with state 3 because

(A, B, C, B) is a non-simple path. So we backtrack to A, and visit

D in state 1. However, if we have retained markings, we cannot

visit node C as it is already marked with state 2. Consequently,

the answer (A, B) is not found.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 19

Suffix language

Definition Given an NDFA M = (S, , , s0, F), for each pair of states

s, t  S, we define the language from s to t, denoted by Lst, as the set

of strings that take M from state s to state t. In particular, for a state

s  S, the suffix language of s, denoted by LsF (or [s]), is the set of

strings that take M from s to some final state. Clearly, [s0] = L(M).

Similar definitions apply for a DFA.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 20

Suffix language

Definition Let I be the intersection graph of a db-graph G and a DFA

M = (S, , , s0, F) accepting L(R). Assume that for nodes u and v in

G and states s, t  S, there are paths p from (u, s0) to (v, s) and q from

(v, s) to (v, t) in I (that is, there is a cycle at v in G that satisfies Lst),

such that no first component of a node p or q repeats except for the

endpoints of q. In other words, p and q correspond to a simple path

and a simple cycle, respectively, in G. If [t]  [s], then we say there

is a conflict between s and t at v. If there are no conflicts in I, then I is

said to be conflict-free, as are G and R.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 21

Example

Consider the following M and G.

0
a

1 2 3
a a

0

M:

A

CB D

a a

a a

a a

3

2

1

G:

Recall that, if markings were retained, the answer (A, B) would not

be found. However, there is a conflict. This is because node B in G

can be marked with state 1 and there is a cycle at B which satisfies

L13, but [3]  [1].

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 22

Algorithm B

(e1) … (en-1) = (p)  L(R)?

1. Traverse simple paths in G, using a DFA M accepting L(R) to

control the search by marking nodes as they are visited.

2. Record with which state of M a node is visited. (We allow a node

to be visited with different states.)

3. If no conflicts are detected, the algorithm retains markings,

while whenever a conflict arises, it unmarks nodes so that no

answers are lost.

4. A node with the same state cannot be visited more than once.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 23

Algorithm B

Input: db-graph G = (V, E, , ), query QR.

Output: QR(G), the value of QR on G.

1. Construct a DFA M = (S, , , s0, F) accepting L(R).

2. Initialize QR(G) to .

3. For each node v  V, set CM[v] to null and PM[v] to .

4. Test [s]  [t] for each pair of states s and t.

5. For each node v  V,

(a) call search-G(v, v, s0, conflict)

(b) reset PM[w] to  for any marked node w  V.

Two types of markings:

CM[v] – used to indicate that v is already on the stack

PM[v] – a set of states, recording earlier markings of v, excluding the current path.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 24

procedure search-G(u, v, s, var conflict)

6. conflict  false

7. CM[v]  s

8. if s  F then QR(G)  QR(G)  {(u, v)}

9. for each edge in G from v to w with label a do

10. if (s, a) = t and t  PM[w] then

11. if CM[w] = q then conflict  ([t]  [q])

12. else /* CM[w] is null*/

13. search-G(u, w, t, new-conflict)

14. conflict  conflict or new-conflict

15. CM[w]  null

16. if not conflict then PM[w]  PM[w]  {s}

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 25

Example

Let R = a((bc + )d + ec)) be the regular expression for query QR.

A DFA M accepting L(R) and a db-graph G are shown below.

0
a

1 2

4

0

M:
A

CB D

a a

b,e c

c b,e

3

21

G:b c
3

5

e dd

c
E

d
4

Assume that we start by marking node A with state 0, after which

we proceed to mark B with 1, C with 2, and B with 3.

Since no edge labeled d leaves B, we backtrack to C and attempt to

visit B in state 3.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 26

• Although B has already a current marking (CM[B] = 1), this is not a conflict

since [1]  [3].

• The algorithm now backtrack to B in state 1 and marks E with state 4.

• After backtracking again to B in state 1, the markings are given as in the above

figure.

• Next, the algorithm marks C with state 5 and D with 4.

• On backtracking to C and attempting to mark B with 4, a conflict is detected

since [4]  [1].

• So on backtracking to A, the markings 5 and 1 will be removed from C and B,

respectively.

Finding Regular Simple Paths

Jan. 2017 Yangjun Chen ACS-7102 27

• Now D is marked with 1, but since C has a previous marking of 2, that marking

will not be repeated. So C is marked with 5 (along another transit labeled with e

in M. 5 was previously removed.) After this, B can be marked with 4.

• When the algorithm backtracks to C and attempt to visit D, it discovers that D

was previously marked with 4, so no conflict is registered. The marking are now

given as shown below.

0

A

CB D

a a

b,e c

(3), (4), 1

(2), 5(4)

G:

E
d

(4)

