- Basic definitions
- Regular paths
- Regular simple paths
- An query evaluation algorithm

Finding Regular Simple Paths

Example.

Let G be a graph describing a hypertext document:
Nodes - chucks of text
Edges - links (cross-references).
Readers read the document by following links.
Query: is there a way to get from Section 3.1 to Section 5.2 and then to the conclusion?

Finding Regular Simple Paths

Basic definitions

We model a graph database as a labeled directed graph

$$
G=(V, E, \Sigma, \theta),
$$

where V is a set of nodes, E is a set of edges, Σ is a set of symbols, called the alphabet, and θ is an edge labeling function mapping E to Σ.

Finding Regular Simple Paths

A regular path expression (or regular expression) is defined by the following grammar:

$$
\alpha:=\varnothing|\varepsilon| a\left|-\left|\left(\beta_{1}+\beta_{2}\right)\right|\left(\beta_{1} \beta_{2}\right)\right| \beta^{*}
$$

where α, β, β_{1}, and β_{2} denote regular path expressions, a denotes a constant in Σ,
"-" denotes a wildcard matching any constant in Σ, \varnothing denotes the empty set, and ε denotes the empty string.

Example: $(00)^{*}, 0^{*} 10^{*}, 1^{*} 01^{*}, 0^{*} 10^{*}+1^{*} 01^{*}$.

Finding Regular Simple Paths

Basic definitions

The language $L(\alpha)$ (a set of strings) created from α is defined as follows.
$L(\varepsilon)=\{\varepsilon\}$.
$L(\varnothing)=\varnothing$.
$L(a)=\{a\}$, for $a \in \Sigma$.
$L\left(\beta_{1}+\beta_{2}\right)=L\left(\beta_{1}\right) \cup L\left(\beta_{2}\right)=\left\{w \mid w \in L\left(\beta_{1}\right)\right.$ or $w \in L\left(\beta_{2}\right)$.
$L\left(\beta_{1} \beta_{2}\right)=L\left(\beta_{1}\right) L\left(\beta_{2}\right)=\left\{w_{1} w_{2} \mid w_{1} \in L\left(\beta_{1}\right)\right.$ and $\left.w_{2} \in L\left(\beta_{2}\right)\right\}$.
$L\left(\beta^{*}\right)=\cup_{i=0} L^{i}(\beta)$, where $L^{0}(\beta)=\{\varepsilon\}$ and $L^{i}(\beta)=L^{i-1}(\beta) L(\beta)$.
Regular expressions α_{1} and α_{2} are equivalent, written $\alpha_{1} \equiv \alpha_{2}$, if $L\left(\alpha_{1}\right)=L\left(\alpha_{2}\right)$. The length of regular expression α, denoted $|\alpha|$, is the number of symbols appearing in α.

Finding Regular Simple Paths

Basic definitions

A nondeterministic finite automaton (NDFA) M is a 5-tuple
$\left(S, \Sigma, \delta, s_{0}, F\right)$,
where $1 . S$ is the finite set of states of the control.
2. Σ is the alphabet from which input symbols are chosen.
3. δ is the state transition function which maps $S \times(\Sigma \cup\{\varepsilon\})$
to the set of subsets of S.
4. s_{0} in S is the initial state of the finite control.

Finding Regular Simple Paths

5. $F \subseteq S$ is the set of finite (or accepting) states.

Associated with an NDFA is a directed graph, in which each node stands for a state in the NDFA, and each edge (s, s^{\prime}) labeled with a symbol a in Σ for a state transit $\delta(s, a)$ which contains s '.

The extended transition function δ^{*} is defined as follows.

- Let s and t be two states in S.
- For $a \in \Sigma$, and $w \in \Sigma^{*}, \delta^{*}(s, \varepsilon)=\{s\}$, and

$$
\delta^{*}(s, w a)=\cup_{t \in \delta^{*}(s, w)} \delta(t, a)
$$

Finding Regular Simple Paths

Basic definitions

An NDFA $M=\left(S, \Sigma, \delta, s_{0}, F\right)$ accepts $w \in \Sigma^{*}$ if $\delta^{*}\left(s_{0}, w\right) \cap F \neq$ \emptyset.
The language $L(M)$ accepted by M is the set of all strings accepted by M.

A deterministic finite automaton (DFA) is a nondeterministic finite automaton (S, I, δ, s_{0}, F) with the following conditions satisfied:
1.
$\delta(s, \varepsilon)=\phi$ for all $s \in S$, and
2. Each state has 1 or 0 successor.

Finding Regular Simple Paths

Simple paths

- Let Σ be a finite alphabet disjoint from $\{\varepsilon, \phi,()$,$\} .$
- A regular expression R over Σ and the language $L(R)$ denoted by R are defined in the usual way.
- Let $G=(V, E, \Sigma, \theta)$ be a db-graph and $p=\left(v_{1}, e_{1}, \ldots, e_{n-1}, v_{n}\right)$, where $v_{i} \in N, 1 \leq i \leq n$, and $e_{j} \in E, 1 \leq j \leq n$, be a path in G.
- We say p is a simple path if all the v_{i} 's are distinct for $1 \leq i \leq n$. We call the string

$$
\theta\left(e_{1}\right) \ldots \theta\left(e_{n-1}\right)
$$

the path label of p, denoted by $\theta(p) \in \Sigma^{*}$.

Finding Regular Simple Paths

Let R be a regular expression over Σ.

We say that the path p satisfies R if $\theta(p) \in L(R)$. The query Q_{R} on db-graph G, denoted by $Q_{R}(R)$, is defined as the set of pairs (x, y) such that there is a simple path from x to y in G which satisfies R.

If $(x, y) \in Q_{R}(R)$, then (x, y) satisfies Q_{R}.

Finding Regular Simple Paths

Regular simple path Problem

Instance: db-graph $G=(V, E, \Sigma, \theta)$, nodes $x, y \in N$, regular expression R over Σ.

Question: Does G contain a directed simple path

$$
p=\left(v_{1}, e_{1}, \ldots, e_{n-1}, v_{n}\right)
$$

from x to y such that p satisfies R, that is,

$$
\theta\left(e_{1}\right) \ldots \theta\left(e_{n-1}\right)=\theta(p) \in L(R) ?
$$

Finding Regular Simple Paths

Naïve method

A naïve method for evaluating a query Q_{R} on a db-graph G is to traverse every simple path satisfying R in G exactly once.

The penalty for this is that such an algorithm takes exponential time when G has an exponential number of simple paths.

Finding Regular Simple Paths

Intersection graph

Let $M_{1}=\left(S_{1}, \Sigma, \delta_{1}, p_{0}, F_{1}\right)$ and $M_{2}=\left(S_{2}, \Sigma, \delta_{2}, q_{0}, F_{2}\right)$ be NDFAs. The NDFA for $M_{1} \cap M_{2}$ is $I=\left(S_{1} \times S_{2}, \Sigma, \delta,\left(p_{0}, q_{0}\right), F_{1} \times F_{2}\right)$, where for $a \in \Sigma,\left(p_{1}, q_{1}\right) \in \delta\left(\left(p_{2}, q_{2}\right), a\right)$ if and only if $p_{2} \in \delta_{1}\left(p_{1}, a\right)$ and $q_{2} \in \delta_{2}\left(q_{1}, a\right)$. We call the transition graph of I the intersection graph of M_{1} and M_{2}.

Regular path Problem

Instance: db-graph $G=(V, E, \Sigma, \theta)$, nodes $x, y \in V$, regular expression R over Σ.
Question: Does G contain a directed path (not necessarily simple) $p=$ $\left(v_{1}, e_{1}, \ldots, e_{n-1}, v_{n}\right)$ from x to y such that p satisfies R, that is,

$$
\theta\left(e_{1}\right) \ldots \theta\left(e_{n-1}\right)=\theta(p) \in L(R) ?
$$

Regular path Problem can be decided in polynomial time

- We view the db-graph $G=(V, E, \Sigma, \theta)$ as an NDFA with initial state x and final state y.
- Construct the intersection graph I of G and $M=\left(S, \Sigma, \delta, s_{0}, F\right)$, an NDFA accepting $L(R)$.
- There is a path from x to y satisfying R if and only if there is path in I from $\left(x, s_{0}\right)$ to $\left(y, s_{f}\right)$ for some $s_{f} \in F$.
- All this can be done in polynomial time.

Finding Regular Simple Paths

Algorithm A

- A db-graph $G=(V, E, \Sigma, \theta)$ with nodes $x, y \in V$. (We view G as an NDFA with initial state x and final state y.)
- regular expression R over Σ.

Question: Does G contain a directed path (not necessarily simple)

$$
p=\left(v_{1}, e_{1}, \ldots, e_{n-1}, v_{n}\right)
$$

from x to y such that p satisfies R, that is,

$$
\left(e_{1}\right) \ldots \theta\left(e_{n-1}\right)=\theta(p) \in L(R) ?
$$

Finding Regular Simple Paths

Algorithm A

$$
\left(e_{1}\right) \ldots \theta\left(e_{n-1}\right)=\theta(p) \in L(R) ?
$$

1. Traverse simple paths in G, using a DFA M accepting $L(R)$ to control the search by marking nodes as they are visited.
2. Record with which state of M a node is visited. (We allow a node to be visited with different states.)
3. A node with the same state cannot be visited more than once.

Finding Regular Simple Paths

Incompleteness

Using the above algorithm, we may fail to find all the answers.
Example Consider a query Q_{R}, where $R=a a a$.

Finding Regular Simple Paths

- Assume that we start traversal from node A in G, and follow the path to B, C and D. Node A, B, C and D are marked with $0,1,2$ and 3 , respectively, and the answer (A, D) is found, since 3 is a final state.
- If we backtrack to node C, we cannot mark B with state 3 because (A, B, C, B) is a non-simple path. So we backtrack to A, and visit D in state 1 . However, if we have retained markings, we cannot visit node C as it is already marked with state 2 . Consequently, the answer (A, B) is not found.

Finding Regular Simple Paths

Suffix language

Definition Given an NDFA $M=\left(S, \Sigma, \delta, s_{0}, F\right)$, for each pair of states $s, t \in S$, we define the language from s to t, denoted by $L_{s t}$, as the set of strings that take M from state s to state t. In particular, for a state $s \in S$, the suffix language of s, denoted by $L_{s F}$ (or [s]), is the set of strings that take M from s to some final state. Clearly, $\left[s_{0}\right]=L(M)$. Similar definitions apply for a DFA.

Finding Regular Simple Paths

Suffix language

Definition Let I be the intersection graph of a db-graph G and a DFA $M=\left(S, \Sigma, \delta, s_{0}, F\right)$ accepting $L(R)$. Assume that for nodes u and v in G and states $s, t \in S$, there are paths p from $\left(u, s_{0}\right)$ to (v, s) and q from (v, s) to (v, t) in I (that is, there is a cycle at v in G that satisfies $L_{s t}$), such that no first component of a node p or q repeats except for the endpoints of q. In other words, p and q correspond to a simple path and a simple cycle, respectively, in G. If $[t] \not \subset[s]$, then we say there is a conflict between s and t at v. If there are no conflicts in I, then I is said to be conflict-free, as are G and R.

Finding Regular Simple Paths

Example

Consider the following M and G.

M:

$$
\text { (0) } \xrightarrow{a} \text { (1) } \xrightarrow{a} \text { (2) } \xrightarrow{a} \text { (3) }
$$

Recall that, if markings were retained, the answer (A, B) would not be found. However, there is a conflict. This is because node B in G can be marked with state 1 and there is a cycle at B which satisfies L_{13}, but [3] $\not \subset[1]$.

Finding Regular Simple Paths

Algorithm B

$$
\left(e_{1}\right) \ldots \theta\left(e_{n-1}\right)=\theta(p) \in L(R) ?
$$

1. Traverse simple paths in G, using a DFA M accepting $L(R)$ to control the search by marking nodes as they are visited.
2. Record with which state of M a node is visited. (We allow a node to be visited with different states.)
3. If no conflicts are detected, the algorithm retains markings, while whenever a conflict arises, it unmarks nodes so that no answers are lost.
4. A node with the same state cannot be visited more than once.

Finding Regular Simple Paths

Algorithm B

Input: db-graph $G=(V, E, \Sigma, \theta)$, query Q_{R}.
Output: $Q_{R}(G)$, the value of Q_{R} on G.

1. Construct a DFA $M=\left(S, \Sigma, \delta, s_{0}, F\right)$ accepting $L(R)$.
2. Initialize $Q_{R}(G)$ to \varnothing.
3. For each node $v \in V$, set $C M[v]$ to null and $P M[v]$ to \varnothing.
4. Test $[s] \supseteq[t]$ for each pair of states s and t.
5. For each node $v \in V$,
(a) call search- $G\left(v, v, s_{0}\right.$, conflict $)$
(b) reset $P M[w]$ to \varnothing for any marked node $w \in V$.

Two types of markings:
$C M[v]$ - used to indicate that v is already on the stack
$P M[\nu]$ - a set of states, recording earlier markings of v, excluding the current path.

Finding Regular Simple Paths

procedure search- $G(u, v, s$, var conflict $)$

6. conflict \leftarrow false
7. $C M[v] \leftarrow s$
8. if $s \in F$ then $Q_{R}(G) \leftarrow Q_{R}(G) \cup\{(u, v)\}$
9. for each edge in G from v to w with label a do
10. if $\delta(s, a)=t$ and $t \notin P M[w]$ then
11. if $C M[w]=q$ then conflict $\leftarrow([t] \not \subset[q])$
12. else /* $C M[w]$ is null*/
13. $\operatorname{search}-G(u, w, t$, new-conflict $)$
14. conflict \leftarrow conflict $\mathbf{~ o r}$ new-conflict
15. $C M[w] \leftarrow$ null
16. if not conflict then $P M[w] \leftarrow P M[w] \cup\{s\}$

Finding Regular Simple Paths

Example

Let $R=a((b c+\varepsilon) d+e c))$ be the regular expression for query Q_{R}. A DFA M accepting $L(R)$ and a db-graph G are shown below.

M:

Assume that we start by marking node A with state 0 , after which we proceed to mark B with 1, C with 2 , and B with 3 .
Since no edge labeled d leaves B, we backtrack to C and attempt to visit B in state 3 .

Finding Regular Simple Paths

- Although B has already a current marking $(C M[B]=1)$, this is not a conflict since [1] $\supseteq[3]$.
- The algorithm now backtrack to B in state 1 and marks E with state 4 .
- After backtracking again to B in state 1 , the markings are given as in the above figure.
- Next, the algorithm marks C with state 5 and D with 4 .
- On backtracking to C and attempting to mark B with 4 , a conflict is detected since [4] $\not \subset[1]$.
- So on backtracking to A, the markings 5 and 1 will be removed from C and B, respectively.

Finding Regular Simple Paths

- Now D is marked with 1 , but since C has a previous marking of 2 , that marking will not be repeated. So C is marked with 5 (along another transit labeled with e in $M .5$ was previously removed.) After this, B can be marked with 4.
- When the algorithm backtracks to C and attempt to visit D, it discovers that D was previously marked with 4 , so no conflict is registered. The marking are now given as shown below.

