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Database Systems and Internet

• Architecture of a search engine

- Web crawler

- Query engine

- PageRank for identifying important pages

• Data stream management

- What is a steam?

- Stream compression

- Stream mining
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The Architecture of a Search Engine

Page

Repository
Indexes

Query

Engine

user

Indexer

RankerCrawler

query

Ranked

pages

Web



DBS and the Internet

Jan. 2023 Yangjun Chen          ACS-4902 3

The Architecture of a Search Engine

There are two main functions that a search engine must perform.

1. The Web must be crawled. That is, copies of many of the pages

on the Web must be brought to the search engine and processed.

2. Queries must be answered, based on the material gathered from

the Web. Usually, a query is in the form of a word or words that

the desired Web pages should contain, and the answer to a

query is a ranked list of the pages that contain all those words,

or at least some of them.
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The Architecture of a Search Engine

Crawler – interact with the Web and find pages, which will be

stored in Page Repository.

Indexer – inverted file: for each word, there is a list of the pages that

contain the word. Additional information in the index for

the word may include its locations within the page or its

role, e.g., whether the word is in the header. 

Query engine  – takes one or more words and interacts with indexes,

to determine which pages satisfy the query. 

Ranker – order the pages according to some criteria.
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Web Crawler

A crawler can be a single machine that is started with a set S,

containing the URL’s of one or more Web pages to crawl. There is

a repository R of pages, with the URL’s that have already been

crawled; initially R is empty.

Algorithm: A simple Web Crawler

Input: an initial set of URL’s S.

Output: a repository R of Web pages
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Web Crawler

Method: Repeatedly, the crawler does the following steps.

1. If S is empty, end.

2. Select a URL r from the set S to “crawl” and delete r from S.

3. Obtain a page p, using its URL r. If p is already in repository

R, return to step (1) to select another URL from S.

4. If p is not already in R:

(a) Add p to R.

(b) Examine p for links to other pages. Insert into S the URL of

each page q that p links to, but that is not already in R or S.

5. Go to step (1).

r: https://www.youtube.com/watch?v =EctlAlYVWwU →

r1

r2…

p:

https://www.youtube.com/watch?v=EctlAlYVWwU
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Web Crawler

The algorithm raises several questions.

a) How to terminate the search if we do not want to search the

entire Web?

b) How to check efficiently whether a page is already in repository

R?

c) How to select a URL r from S to search next?

d) How to speed up the search, e.g., by exploiting parallelism?
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Terminating Search

The search could go on forever due to dynamically constructed

pages.

• Set a limit on the number of pages to crawl.

Set limitation:

• Set a limit on the depth of the crawl.

Initially, the pages in set S have depth 1. If the page p selected

for crawling at step (2) of the algorithm has depth i, then any

page q we add to S at step 4-(b) is given depth i + 1. Moreover,

if p has depth equal to the limit, then do not examine links out

of p at all. Rather we simply add p to R if it is not already there.

The limit could be either on each site or on the total number of

pages.
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Managing the Repository

• When we add a new URL for a page p to the set S, we should

check that it is not already there.

• When we decide to add a new page p to R at step 4-(a) of the

algorithm, we should be sure the page is not already there.

• Hash each Web page to a signature of, say, 64 bits.

• The signatures themselves are stored in a hash table T, i.e., they

are further hashed into a smaller number of buckets, say one

million buckets.

Page signatures:
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• Hash each Web page to a signature of, say, 64 bits.

• The signatures themselves are stored in a hash table T, i.e., they

are further hashed into a smaller number of buckets, say one

million buckets.

• When inserting p into R, compute the 64-bit signature h(p), and

see whether h(p) is already in the hash table T. If so, do not store

p; otherwise, store p in T.

Page signatures:

Signatures:

1111 0100 1100

… …

Pages: Hash table:
hashing1 hashing2

Hashing2(111101001100) = addr.

new

page
hashing1 (1111…100) = addr.1111 …100
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• Signature file

- A signature file is a set of bit strings, which are called 

signatures.

- In a signature file, each signature is constructed for a 

record in a table, a block of text, a page or an image.

- When a query arrives, a query signature will be 

constructed according to the key words involved in the 

query. Then, the signature file will be searched against 

the query signature to discard non-qualifying signatures, 

as well as the objects represented by those signatures.



DBS and the Internet

Jan. 2023 Yangjun Chen          ACS-4902 13

• Signature generation

- Generate a signature for an attribute value or a key word

Before we generate the signature for an attribute value, or 

a key word, three parameters have to be determined

F: number of 1s in bit string

m: length of bit string

D: number of attribute values in a record (or average 

number of the key words in a page)

Optimal choice of the parameters:

m  ln2 = F  D
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• Signature generation

- Decompose an attribute value (or a key word) into a series

of triplets

- Using a hash function to map a triplet to an integer p,

indicating that the pth bit in the signature will be set to 1. 

Example: Consider the word “professor”. We will decompose 

it into 6 triplets:

“pro”, “rof”, “ofe”, “fes”, “ess”, “sor”.

Assume that hash(pro) = 2, hash(rof) = 4, hash(ofe) =8, and 

hash(fes) = 9.

Signature: 010 100 011 000
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• Signature file

- Generate a signature for a record (or a page)

page: ... SGML ... databases ... information ...

word signature:

SGML

database

information

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110page signature (OS)



superimposing
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Selecting the next URL from S

• Completely random choice of next page.

• Maintain S as a queue. Thus, do a breadth-first search of the Web

from the starting point or points with which we initialized S. Since

we presumably start the search from places in the Web that have

“important” pages, we are assured of visiting preferentially those

portions of the Web.

• Estimate the importance of page links in S, and to favor those pages 

we estimate to be the most important.

- PageRank

- Priority queue
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Speeding up the Crawl

• More than one crawling machine

• More crawling processes in a machine

• Concurrent access to S
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Query Processing in Search Engine

• Search engine queries are word-oriented: a boolean combination

of words

• Answer: all pages that contain such words

• Method:

- The first step is to use the inverted index to determine those

pages that contain the words in the query.

- The second step is to evaluate the boolean expression: 

The AND of bit vectors (a bit vector represents an inverted

list) gives the pages containing both words.

The OR of bit vectors gives the pages containing one or both.

(word1  word2)  (word3  word4) 
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word1: 10 … 001 … 00 

word2: 10 … 101 … 10 

word1 appears in document i



10 … 001 … 00 Show all the documents

which contain word1 and word2

Inverted list

word3: 10 … 001 … 01 

Word4: 10 … 101 … 11 

10 … 001 … 01 

(word1  word2)  (word3  word4):  

10 … 001 … 00 

10 … 001 … 01 
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Trie-based Method for Query Processing

• A trie is a multiway tree, in which each path corresponds to a

string, and common prefixes in strings to common prefix paths.

• Leaf nodes include either the documents themselves, or links to

the documents containing the string that corresponds to the path.

Example:

s1: cfamp

s2: cbp

s3: cfabm

s4: fb

A trie constructed for

The following strings:
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Trie-based Method for Query Processing

• Item sequences sorted (decreasingly) by appearance frequency 

(af) in documents.

DocID Items Sorted item sequence 

1 f, a, c, m, p c, f, a, m, p 

2 a, b, c, f c, f, a, b

3 b, f f, b

4 b, c, p c, b, p

5 a, f, c, m, p, e c, f, a, m, p, e

• View each sorted item sequence as a string

• Construct a trie over them, in which each node is associated 

with a set of document IDs each containing the substring 

represented by the corresponding prefix.

af(w) = 
No. of doc.

No. of doc. Containing w
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Trie-based Method for Query Processing

• View each sorted item sequence as a string and construct a trie

over them.

items links

c

f

a

b

m

p

e

{1, 2, 4, 5}

{1, 2, 5}

{2}

{4} {3}

Header table:

{1, 2, 5}

{1, 5}

{1, 5}

{3}

{4}

{2}

Sorted item sequence DocID

1 c, f, a, m, p 

2 c, f, a, b, m

3 f, b

4 c, b, p

5 c, f, a, m, p, e
e

{5}
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Trie-based Method for Query Processing

• Evaluation of queries

- Let Q = word1  word2 …  wordk be a query

- Sort increasingly the words in Q according to the appearance

frequency:

word i1
word ik

- Find a node in the trie, which is labeled with word i1

- If the path from the root to word i1
contains all wordi (i = 1, …, k),

return the document identifiers associated with word i1

- The check can be done by searching the path bottom-up, starting

from           . In this process, we will first try to find           , and

then           , and so on.

word i1 word i2

word i3

 word i2
 … 
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Trie-based Method for Query Processing

• Example

query: c  b  f b  f  c
sorting

items links

c

f

a

b

m

P

e

Header table:

{1, 2, 4, 5}

{1, 2, 5}

{2}

{4} {3}

{1, 2, 5}

{1, 5}

{1, 5}

{3}

{4}

{2}

e
{5}
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Ranker: ranking pages

Once the set of pages that match the query is determined, these

pages are ranked, and only the highest-ranked pages are shown to

the user.

• The presence of all the query words

• The presence of query words in important positions in the page

• Presence of several query words near each other would be a

more favorable indication than if the words appeared in the

page, but widely separated.

• Presence of the query words in or near the anchor text in links

leading to the page in question.

Measuring PageRank:
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PageRank for Identifying Important Pages

One of the key technological advances in search is the PageRank

algorithm for identifying the “importance” of Web pages.

The Intuition behind PageRank

When you create a page, you tend to link that page to others that you

think are important or valuable

A Web page is important if many important pages link to it.
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Recursive Formulation of PageRank

The Web navigation can be modeled as random walker move. So

we will maintain a transition matrix to represent links. 

• Number the pages 1, 2, …, n.

• The transition matrix M has entries mij in row i and column j,

where:

1. mij = 1/r if page j has a link to page i, and there are a total

r  1 pages that j links to.

2. mij = 0 otherwise.

- If every page has at least one link out, then M is stochastic –

elements are nonnegative, and its columns each sum to exactly 1.

- If there are pages with no links out, then the column for that page

will be all 0’s. M is said to be substochastic if there are columns

sum to less than 1.

i j

…
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½ ½ 0

½ 0 1

0 ½ 0

M =

p1 p2 p3

Let y, a, m represent the fractions of the time the random walker

spends at the three pages, respectively. We have

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

It is because after a large number of moves, the walker’s distribution

of possible locations is the same at each step.

The time that the random walker spends at a page is used as the

measurement of “importance”.

Yahoo

Amazon Microsoft

1

2 3
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½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

a = ½  y + 0  a + 1  m

y = ½  y + ½  a + 0  m

m = 0  y + ½  a + 0  m
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a = ½  y + 0  a + 1  m

y = ½  y + ½  a + 0  m

m = 0  y + ½  a + 0  m

P(a) = ½  P(y) + 0  a P(a) + 1  P(y)

P(y) = ½  P(y) + ½  P(a) + 0  P(m)

P(m) = 0  P(y) + ½  P(a) + 0  P(m)

P(a) = P(a | y)  P(y) + P(a | a)  P(a) + P(a | m)  P(m)

P(y) = P(y | y)  P(y) + P(y | a)  P(a) + P(y | m)  P(m)

P(m) = P(m | y)  P(y) + P(m | a)  P(a) + P(m | m)  P(m)

Conditional probability
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Solutions to the equation:

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

• If (y0, a0, m0) is a solution to the equation, then (cy0, ca0, cm0)

is also a solution for any constant c.

• y0 + a0 + m0 = 1.

Gaussian elimination method – O(n3). If n is large, the method

cannot be used. (Consider billions pages!) 
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Approximation by the method of relaxation:

• Start with some estimate of the solution and repeatedly multiply

the estimate by M.

• As long as the columns of M each add up to 1, then the sum of

the values of the variables will not change,  and eventually they

converge to the distribution of the walker’s location.

• In practice, 50 to 100 iterations of this process suffice to get very

close to the exact solution.

Suppose we start with (y, a, m) = (1/3, 1/3, 1/3). We have

½ ½ 0

½ 0 1

0 ½ 0

=

2/6

3/6

1/6

1/3

1/3

1/3
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At the next iteration, we multiply the new estimate (2/6, 3/6, 1/6)

by M, as:

½ ½ 0

½ 0 1

0 ½ 0

=

5/12

4/12

3/12

2/6

3/6

1/6

If we repeat this process, we get the following sequence of vectors:

9/24

11/24

4/24

,
20/48

17/48

11/48

, …., 

2/5

2/5

1/5
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Spider Traps and Dead Ends

• Dead ends. Some Web pages have no out-links. If the random

walker arrives at such a page, there is no place to go next, and the

walk ends.

- Any dead end is, by itself, a spider trap. Any page that links

only to itself is a spider trap.

- If a spider trap can be reached from outside, then the random

walker may wind up there eventually and never leave.

• Spider traps. There are sets of Web pages with the property that

if you enter that set of pages, you can never leave because there

are no links from any page in the set to any page outside the set. 
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Spider Traps and Dead Ends

Applying relaxation to the matrix of the Web with spider traps can

result in a limiting distribution where all probabilities outside a

spider trap are 0.

Problem:

Example.

½ ½ 0

½ 0 0

0 ½ 1

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3
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Solutions to the equation:

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

Initially, 
y

a

m

=
1/3

1/3

1/3

1/3

1/3

1/3

2/6

1/6

3/6

3/12

2/12

7/12

5/24

3/24

16/24

8/48

5/48

35/48

0

0

1

… …

This shows that with probability 1, the walker will eventually

wind up at the Microsoft page (page 3) and stay there.
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Problem Caused by Spider Traps

• If we interpret these PageRank probabilities as “importance” of

pages, then the Microsoft page has gathered all importance to

itself simply by choosing not to link outside.

• The situation intuitively violates the principle that other pages,

not you yourself, should determine the importance of your page.
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Problem Caused by Dead Ends

• The dead end also cause the PageRank not to reflect importance

of pages. 

Example.

½ ½ 0

½ 0 0

0 ½ 0

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

1/3

1/3

1/3

2/6

1/6

1/6

3/12

2/12

1/12

5/24

3/24

2/24

8/48

5/48

3/48

0

0

0

… …
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PageRank Accounting for Spider Traps and Dead Ends

We simulate the web navigation by a random walk. Each time a

walker goes to a page, we let the walker follow a random out-link,

if there is one, with probability  (normally, 0.8    0.9). With

probability 1 -  (called the taxation rate), we remove that walker

and deposit a new walker at a randomly chosen Web page.

• If the walker gets stuck in a spider trap, it doesn’t matter because

after a few time steps, that walker will disappear and be replaced

by a new walker.

• If the walker reaches a dead end and disappears, a new walker

will take over shortly.
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Example.

½ ½ 0

½ 0 0

0 ½ 1

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

Let Pnew and Pold be the new and old distributions of the location of

the walker after one iteration, the relationship between these two

can be expressed as:

½ ½ 0

½ 0 0

0 ½ 1

Pnew = 0.8 Pold + 0.2
1/3

1/3

1/3

 1 - 
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The meaning of the above equation is:

With probability 0.8, we multiply Pold by the matrix of the Web to

get the new location of the walker, and with probability 0.2 we start

with a new walker at a random place.

If we start with Pold = (1/3, 1/3, 1/3) and repeatedly compute Pnew

and then replace Pold by Pnew, we get the following sequence of

approximation to the asymptotic distribution of the walker: 

.333

.333

.333

.333

.200

.467

.280

.300

.520

.259

.179

.563

7/33

5/33

21/33

… …
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Example.

½ ½ 0

½ 0 0

0 ½ 0

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

½ ½ 0

½ 0 0

0 ½ 0

Pnew = 0.8 Pold + 0.2
1/3

1/3

1/3

 1 - 
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If we start with Pold = (1/3, 1/3, 1/3) and repeatedly compute Pnew

and then replace Pold by Pnew, we get the following sequence of

approximation to the asymptotic distribution of the walker: 

.333

.333

.333

.333

.200

.200

.280

.200

.147

.259

.179

.147

35/165

25/165

21/165
, …,

Notice that these probabilities do not sum to one, and there is slightly

more than 50% probability that the walker is “lost” at any given

time. However, the ratio of the importance of Yahoo!, and Amazon

are the same as in the above example. That makes sense because in

both the cases there are no links from the Microsoft page to

influence the importance of Yahoo! or Amazon.
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Topic-Specific PageRank

The calculation o PageRank should be biased to favor certain pages. 

Teleport Sets 

Choose a set of pages about a certain topic (e.g., sport) as a teleport

set.

Yahoo

Amazon Microsoft

1

2 3

Assume that we are interested only in retail sales, so we choose a

teleport set that consists of Amazon alone. 
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½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

½ ½ 0

½ 0 1

0 ½ 0

= 0.8

y

a

m

y

a

m

0

1

0

+ 0.2

The entry for Amazon is set to 1. 
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Topic-Specific PageRank

The general rule for setting up the equations in a topic-specific

PageRank problem is as follows. 

Pnew = MPold + (1 - )T

Suppose there are k pages in the teleport set. Let T be a column-

vector that has 1/k in the positions corresponding to members of the

teleport set and 0 elsewhere. Let M be the transition matrix of the

Web. Then, we must solve by relaxation the following iterative rule:

T =

0

1/k

0
.
.
.

1/k
.
.
.
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Data Streams

A data steam is a sequence of tuples, which may be unbounded.

(Note that a relation is a set of tuples. The set is always bounded at

a time point.)

Data-Stream-Management Systems

Working

storage

Permanent 

storage

Standing

queries
Stream management

system

…9, 4, 0, 6, 4, 2, 7

… w, t, d, a, u, z, r

…0, 1, 1, 0, 0, 0, 1

ad-hoc

queries
results

results of

standing

queries
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Using the PostgreSQL DDL, we can not only define tables, but also

data streams:

CREATE STREAM streamname (colname datatype, …) 

type ARCHIVED | UNARCHIVED

• ARCHIVED - streams will take data that is received from a 

wrapper and insert it into a relation named ‘streamname’.

• UNARCHIVED - An unarchived stream is never backed by 

disk storage, and is implemented in terms of shared-memory 

vectors.

• Wrapper – a component to receive data stream from a source 

(e.g., a sensor, a seismometer, … .)
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A simple wrapper:

CREATE WRAPPER mycsvwrapper (

init=csv_init,

next=csv_next,

done=csv_done);

CSV - Comma-separated values

By default, the wrapper listens for connections from a 

data sources on port 5533, by which a simple perl script 

called source.pl is provided to receive data and send 

them to the wrapper.
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Associate a wrapper with a stream

ALTER STREAM streamname ADD 

WRAPPER mycsvwrapper;
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Data Streams

The system accepts data streams as input, and also accepts queries.

Two kinds of queries:

1. Conventional ad-hoc queries.

2. Standing queries that are stored by the system and run on the input

streams at all times.

Example.

Suppose we are receiving streams of radiation levels from sensors

around a nuclear electricity power plant.

1. DSMS stores a sliding window of each input stream in the

“working storage”. All readings from all sensors for the past

24 hours.

2. Data from further back in time could be dropped, summarized,

or copied in its entirety to the permanent store (archive)
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Stream Applications

1. Click streams. A Web site might wish to analyze the clicks it

receives. (An increase in clicks on a link may indicate that the link

is broken, or that it has become of much more interest recently.)

2. Packet streams. We may wish to analyze the sources and

destinations of IP packets that pass through a switch. An unusual

increase in packets for a destination may warn of a

denial-of-service attack.

3. Sensor data. There are many kinds of sensors whose outputs

need to be read and considered collectively, e.g., tsunami warning

sensors that record ocean levels at subsecond frequencies or the

signals that come from seismometers around the world.
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Stream Applications

4. Satellite data. Satellites send back to the earth incredible streams

of data, often petabytes per day.

5. Financial data. Trades of stocks, commodities, and other

financial instruments are reported as a stream of tuples, each

representing one financial transaction. These streams are

analyzed by software that looks for events or patterns that trigger

actions by traders.



DBS and the Internet

Jan. 2023 Yangjun Chen          ACS-4902 55

A Data-Stream Data Model

• Each stream consists of a sequence of tuples. The tuples have a

fixed relation schema (list of attributes), just as  the tuples of a

relation do. However, unlike relations, the sequence of tuples in

a stream may be unbounded.

• Each tuple has an associated arrival time, at which time it

becomes available to DSMS for processing. The DSMS has the

option of placing it in the working storage or in the permanent

storage, or of dropping the tuple from memory altogether. The

tuple may also be processed in simple ways before it is stored.
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A Data-Stream Data Model

• Time-based. It consists of the tuples whose arrival time is

between the current time t and t - , where  is a constant. 

• Tuple-based. It consists of the most recent n tuples to arrive for

some fixed n.

For any stream, we can define a sliding window, which is a set

consisting of the most recent tuples to arrive.

For a certain stream S, we use the notation S[W] to represent a

window, where W is:

1. Row n, meaning the most recent n tuples of the stream; or

2. Range , meaning all tuples that arrived within the previous

amount of time .
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Example.

Let Sensors(sensID, temp, time) be a stream, each of whose 

tuples represent a temperature reading of temp at a certain time

by the sensor named sensID.

Sensors[Range 10 seconds]

describes a window on the Sensor stream consisting of all tuples that

arrived in the past 10 seconds.

Sensors[Row 1000]

describes a window on the Sensor stream consisting of the most

recent 1000 tuples.
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Handling Streams as Relations

Each stream window can be handled as a relation, whose content

changes rapidly.

Suppose we would like to know, for each sensor, the highest

recorded temperature to arrive at the DSMS in the past hour.

SELECT sensID, MAX(temp)

FROM Sensors[Range 1 hour]

GROUP BY sensID;
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Handling Streams as Relations

Suppose that besides the stream Sensors, we also maintain an

ordinary relation:

SELECT MAX(mult*temp + add)

FROM Sensors[Range 1 hour], Calibrate

WHERE Sensors.sensID = Calibrate.sensID

Calibrate(sensID, mult, add),

which gives a multiplicative factor and additive term that are used

to correct the reading from each sensor.

The query finds the highest, properly calibrated temperature

reported by any sensor in the past hour.
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Handling Streams as Relations

Suppose we wanted to give, for each sensor, its maximum

temperature over the past hour, but we also wanted the resulting

tuples to give the most recent time at which that maximum

temperature was recorded.

SELECT s.sensID, s.temp, s.time

FROM Sensors[Range 1 Hour] s

WHERE NOT EXISTS (

SELECT * FROM Sensors[Range 1 Hour]

WHERE sensID = s.sensID AND (

temp > s.temp OR

(temp = s.temp AND time > s.time)

));
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Stream compression and stream mining

Streams tend to be very large. So they should be compressed to

save space.

However, querying a compressed stream can be very difficult.

Consider two problems:

I. Let S be a binary stream (a stream of 0’s and 1’s). We will ask

the number of 1’s in any time range contained within the

window.

II. Let S be a stream. We will count the distinct elements in a

window on S.
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I. Let S be a binary stream (a stream of 0’s and 1’s). We will ask

the number of 1’s in any time range contained within the

window.

Assumption:

i) The length of the sliding window is N.

ii) The stream began at some time in the past. We associate a time

with each arriving bit, which is its position; i.e., the first to 

arrive is at time 1, the next at time 2, and so on.

Our query, which may be asked at any time, is of the form “how

many 1’s are there in the most recent k bits?” (1  k  N)
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Bucket of size m – a section of the window that contains exactly m 1’s.

So the window will be partitioned completely into such buckets,

except possibly for some 0’s that are not part of any bucket.

• A bucket is denoted as (m, t), where t is the time of the most

recent 1 belonging to the bucket.

• Rules for determining the buckets:

1. The size of every bucket is a power of 2 (2i for some i).

2. As we look back in time, the sizes of the buckets never

decrease.

3. For m = 1, 2, 4, 8, … up to some largest-size bucket, there

are one or two buckets of each size, never zero and never

more than two.

4. Each bucket begins somewhere within the current window,

although (largest) bucket may be outside of the window.



DBS and the Internet

Jan. 2023 Yangjun Chen          ACS-4902 64

• Rules for determining the buckets:

100101011000101001010101010101100010101010101110101010111010100010110010

Two of length 1

one of length 2

Two of length 4

Two of length 8

one of length 16,

partially beyond the window

16, 8, 8, 4, 4, 2, 1, 1Sequence of bucket sizes:

Bits come in this way.

(8, 31)time 1
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• How to compress buckets, and then compress bit strings?

• How to answer the queries by using compressed buckets?

• How to dynamically construct buckets?



DBS and the Internet

Jan. 2023 Yangjun Chen          ACS-4902 66

Representing Buckets 

A bucket size can be represented by O(log N) bits. Furthermore,

there are at most O(log N) buckets in a window that must be

represented. Thus, a window of length N an be represented in space

O(log2 N), rather than O(N) bits.

• A bucket (m, t) can be represented in O(log N) bits. First, m, the

size of a bucket, can never get above N. Moreover, m is always a

power of 2, so we don’t have to represent m itself, rather we can

represent log2 m. That requires O(log N) bits. To represent t, the

time of the most recent 1 in the bucket, we need another O(log N)

bits. In principle, t can be an arbitrarily large integer, but it

suffices to represent t modulo N since t is in the window of size N.

100101011000101001010101010101100010101010101110101010111010100010110010

(16, t1)(8, t2)(8, t3)(4, t4)(4, t5)(2, t6)(1, t7)(1, t8)
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• There can be only O(log N) buckets. The sum of the sizes of the

buckets is at most N, and there can be at most two of any size.

If there are more than  2 + 2log2 N buckets, then the largest one is

of size at least

2  2l (l = log2 N),

which is 2N. Therefore, there are at most O(log N) buckets.

Answering queries approximately, using buckets

How many 1’s are there in the most recent k bits?

• Find the least recent bucket B whose most recent bit arrives within

the last k time units.

• All later buckets are entirely within the range of k time units.

• How many 1’s in each of these buckets is known. It is their sizes.

• The bucket B may be partially in the query’s range, and partially

outside it. So we choose half its size as the best guess.  
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100101011000101001010101010101101010101010101110101010111010100010110010

Two of length 1

one of length 2

Two of length 4

Two of length 8

one of length 16,

partially beyond the window

Suppose k = N. We see two buckets of size 1 and one of size 2, which

implies four 1’s. Then, there are two buckets of size 4, giving another

eight 1’s, and two buckets of size 8, implying another sixteen 1’s.

Finally, the last bucket, of size 16, is partially in the window, so we

add another 8 to the estimate.

2  1 + 1  2 + 2  4 + 2  8 + 8 = 36.
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Maintaining Buckets 

We consider two cases.

Case 1: If a new bit arrives, and the last bucket now has a most recent

bit that is more than k time units before the time of the arriving bit.

In this case, we can drop that bucket from the representation since

such a bucket can never be part of the answer to any query. 

Case 2: The time of the arriving bit and the most recent bit in the last

bucket are within the k time units.

If the new bit is 0, nothing will be done.

Otherwise, a new bucket of size  1 (representing just that bit) is

created, which may cause a recursive combining-buckets process.

1000000000000000000000000000000000000000000000000000000000000000000001

new bit
k
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Case 2: The time of the arriving bit and the most recent bit in the last

bucket are within the k time units.

If the new bit is 0, nothing will be done.

Otherwise, a new bucket of size  1 (representing just that bit) is

created, which causes a recursive combining-buckets phase.

• Suppose we have three consecutive buckets of size m, say (m, t1),

(m, t2) and (m, t3), where t1 < t2 < t3. We combine the two least

recent of the buckets, (m, t1), (m, t2) , into one bucket of size 2m:

(2m, t2). (Note that (m, t1) disappears.) 

• This combination may cause three consecutive buckets of size 2m

if there were two of that size previously. Thus, we apply the

combination algorithm recursively, with the size now 2m. (It can

take O(logN) time to do all the necessary combinations.)
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100101011000101001010101010101101010101010101110101010111010100010110010

Two of length 1

one of length 2

Two of length 4

Two of length 8

one of length 16,

partially beyond the window

16, 8, 8, 4, 4, 2, 1, 1Sequence of bucket

sizes:
1

new arriving bit

16, 8, 8, 4, 4, 2, 2, 1
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II. Let S be a stream. We will count the distinct elements in a

window on S.

Applications:

1. The popularity of a Web site is often measured by unique

visitors per month or similar statistics. Think of the logins at a

site like Yahoo! as a stream. Using a window of size one month,

we want to know how many different logins there are.

2. Suppose a crawler is examining sites. We can think of the words

encountered on the pages as forming a stream. If a site is

legitimate, the number of distinct words will fall in a range that

is neither too high (few repetitions of words) nor too low

(expressive repetitions of words). Falling outside that range

suggests that the site could be artificial, e.g., a spam site. 
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N – a number, at least as large as the number of distinct values in

a stream.

R – a variable to record the number of different values. Initially

R = 0.

h – a hash function that maps values to log2 N bits.

As each stream value v arrives, do the following:

1. Compute h(v).

2. Let i be the number of trailing 0’s in h(v).

3. If i > R, set R to be i.

Then, the estimate of the number of distinct values seen so far is 2R.

If the data stream contains m different values, then R is about 

log2 m. 
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Argument

a) The probability that h(v) ends in at least i trailing 0’s is 2-i. (The probability 

that a bit is 0 in a bit string is ½.)

b) If there are m distinct values in the stream so far, the probability that each of 

the m words has less than i trailing 0’s is (1 – 2-i)m and then the probability 

that R < i is (1 – 2-i)m.

c) If i is much less than log2 m, then this probability is close to 0 (i.e. the 

probability that R < i is close 0. So R is not much less than log2 m). If i is 

much larger than log2 m, then this probability is close to 1 (thus R is

definitely smaller than i and close to log2 m.)

d) Thus, R will be frequently close to log2m, and 2R (our estimate) will be 

frequently near m.

1. Compute h(v).

2. Let i be the number of trailing 0’s in h(v).

3. If i > R, set R to be i.

(1 – 2-i) – the probability that for a value v h(v) ends at less than i trailing 0’s.
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If the data stream contains m different values, and each v of such

m values is with i trailing 0’s in h (v) with i much smaller than

log2 m, then the probability of R < i

is close to 0. (That is, R is not likely < i < log2 m.) So, R should

be  log2 m.

(1 – 2-i)m.

But for any v of such m values, if the number i of trailing 0’s

in h(v) is much larger than log2 m, the probability of R < i

is close to 1. So, we have R close log2 m.

(1 – 2-i)m

If the data stream contains m different values, then R is about 

log2 m. 
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Argument

a) The probability that h(v) ends in at least i trailing 0’s is 2-i. (The 

probability that a bit is 0 in a bit string is ½.)

b) If there are m distinct values in the stream so far, the probability that 

each of the m words has less than i trailing 0’s is (1 – 2-i)m and then 

the probability that R < i is (1 – 2-i)m.

c) If i is much less than log2m, then this probability is close to 0 (i.e. the 

probability that R < i is close 0. So R is not much less than log2m). If 

i is much larger than log2m, then this probability is close to 1 (thus R 

is definitely smaller than i and close to log2m.)

c) shows that the probability that R is much < log2m is close to 0, and 

the probability of R < i is close to 1 if i is much larger than log2m. 

d) Thus, R will be frequently close to log2m, and 2R (our estimate) will 

be frequently near m.

(1 – 2-i) – the probability that for a value u h(u) ends at less than i trailing 

0’s.
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It is therefore necessary to get around the fact that there will

occasionally be value of R that is so large it biases the estimate of m

upwards. But we can avoid this bias by

a) Take many estimates of R, using different hash functions.

b) Group these estimates into small groups and take the median of

each group. Doing so estimates the effect of occasional large R’s. 

c) Take the average of medians of the groups.

Discussion

While the above argument is comforting, it is actually inaccurate. Especially, the

expected value of 2R is infinite, or at least it is as large as possible given that N is

finite. The intuitive reason is that, for large R, when R increases by 1, the

probability of R being that large halves, but the value of R doubles, so each

possible value of R contributes the same to the expected value.


