
Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 1

Programming Languages for XML

• XPath

• XQuery

• Extensible StyleSheets Language (XSLT)

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 2

XPath

XPath is a simple language for describing sets of similar paths in a

graph of semistrucured data.

The XPath Data Model

Sequence of items corresponds to a set of tuples in the relational

algebra.

An item is either:

1. A value of primitive type: integer, real, boolean, or string.

2. A node (three kinds of nodes)

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 3

Three kinds of nodes:

(a) Documents. These are files containing an XML document,

perhaps denoted by their local path name or URL.

(b) Elements. These are XML elements, including their opening

tags, their matching closing tags if there is one, and everything

in between (i.e., below them in the tree of semistructured data

that an XML document represents).

(c) Attributes. These are found inside opening tags.

The items in a sequence needn’t be all of the same type although

often they will be.

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 4

A sequence of five items:

10

“ten”

10.0

<Number base = “8”>

<Digit>1</Digit>

<Digit>2</Digit>

</Number>

@val=“10”

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 5

Document Nodes

It is common to apply XPath to documents that are files. We can

make a document node from a file by applying the function:

doc(file name)

The named file should be an XML document. We can name a file

either by giving its local name or a URL if it is remote.

doc(“movie.xml”)

doc(“/usr/slly/data/movies.xml”)

doc(“infolab.stanford.edu/~hector/movies.xml”)

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 6

Path Expressions

An XPath expression starts at the root of a document and gives a

sequence of tags and slashes (/).

doc(file name)/T1/T2/…/Tn

Evaluation of XPath expressions:

1. Start with a sequence of items consisting of one node: the

document node.

2. Then, process each of T1, T2, …, Tn in turn.

3. To process Ti, consider the sequence of items that results from

processing the previous tag, if any. Examine those items, in

order, and find each of all its subelements whose tag is Ti.

doc(“movie.xml”)/StarMoviedata/Star/Name

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 7

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie movieID = “sw” starOf = “cf mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData> doc(“movie.xml”)/StarMoviedata/Star/Name

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 8

/StarMoviedata/Star/Name

<Name>Carrie Fisher</Name>

<Name>Mark Hamill</Name>

<? Xml version = “1.0” … ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

… …

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name>

</Star>

<Movie>

… ..

</Movie>

</StarMovieData>

In the following discussion, the document node is not

included in an XPath for simplicity.

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 9

Relative Path Expressions

In several contexts, we shall use XPath expressions that are relative

to the current node or sequence of nodes.

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType”>

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

<xs: key name = “movieKey”>

<xs: selector xpath = “Movie” />

<xs: field xpath = “@Title” />

<xs: field xpath = “@Year” />

</xs: key>

</xs: element>

</xs: schema>

a current node

a relative path, equal to

/StartMovieData/Movies/Movie

/StarMovieData/Movies

/StartMovieData/Movies/Movie/@Title

/StartMovieData/Movies/Movie/@Year

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 10

Attribute in Path Expressions

• Path expressions allow us to find all the elements within a

document that are reached from the root along a particular path.

/T1/T2/…/Tn/@A

/StarMovieData/Star/@starID

• We can also end a path by an attribute name preceded by an

at-sign.

/T1/T2/…/Tn

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 11

Axes

So far, we have only navigated though semistructured-data graphs in

two ways: from a node to its children or to an attribute. In fact,

XPath provides several axes to navigate a graph in different ways.

Two of these axes are child (the default axis) and attribute, for which

@ is really a shorthand.

Axes used in Xpath expressions: /axis::

Self

Parent

descendant

Ancestor

Next-sibling

Following

Preceding

/self::

/parent::

/descendant::

/ancestor::

/next-sibling::

/following::

/preceding::

/child::

/attribute::

/child::StarMovieData/descentend::Star/attribute::starID

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 12

self Selects the current node

parent Selects the parent of the current node

descendant Selects all descendants (children, grandchildren, etc.) of the

current node

ancestor Selects all ancestors (parent, grandparent, etc.) of the current

node

next-sibling Select the next sibling

following Selects everything in the document after the closing tag of the

current node

preceding Selects all nodes that appear before the current node in the

document, except ancestors, attribute nodes and namespace

nodes

child Selects all children of the current node

attribute Selects all attributes of the current node

Axes

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 13

• All the children of the current node are referred to

as siblings.

• All those nodes visited after the current node during

a DFS search are referred as the following nodes.

• All those nodes visited before the current node

during a DFS search are referred as the preceding

nodes.

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 14

Abbreviated axes

/StarMovieData//Star/@starID

/child::StarMovieData/descentend::Star/attribute::starID

//City

/descendant::City
/StarMovieData//Star//City

produces the same results as //City.

. - stands for self

.. – stands for parent

// - stands for descendant

/ - stands for child

@ – stands for attribute

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 15

Context of Expression

• By “context”, we mean an element in a document,

working as a reference point (current node).

• So it makes sense to apply axes like parent,

ancestor, or next-sibling to a current node.

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 16

/StarMovieData//Star/self::node()

/StarMovieData//Star

• Two functions: text(), node()

- /child::text() – select all those children of the current

node, which are text nodes

- /child::node() – select the all the children of the current

node, whatever their node type

- /self::node() – select the current node

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 17

Conditions in Path Expressions

As we evaluate a path expression, we can restrict ourselves to follow

only a subset of the paths whose tags match the tags in the

expression. To do so, we follow a tag by a condition, surrounded by

square brackets. Such a condition can be anything that has a boolean

value. Values can be compared by comparison operators: = , >=, !=.

A compound condition can be constructed by connecting

comparisons with logic operations: , .

/StarMovieData/Star[.//City = “Malibu”]/Name

a simple predicate

StarMovieData

City

Star

Name

“Malibu”

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 18

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie movieID = “sw” starOf = “cf mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>
/StarMovieData/Star[.//City = “Malibu”]/Name

<Name>Carrie Fisher</Name>

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 19

movie

title
year

Carrie

Fisher

street
city street

city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

starMovieData

star star

name
name

addr. addr. street

city

Star War

StarMovieData

City

Star

Name

“Malibu”

Name = “Carrie Fisher”

/StarMovieData/Star[.//City = “Malibu”]/Name

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 20

Conditions in Path Expressions

As we evaluate a path expression, we can restrict ourselves to follow

only a subset of the paths whose tags match the tags in the

expression. To do so, we follow a tag by a condition, surrounded by

square brackets. Such a condition can be anything that has a boolean

value. Values can be compared by comparison operators: = , >=, !=.

A compound condition can be constructed by connecting

comparisons with operations: , .

/StarMovieData/Star[..//City = “Malibu”]/Name
StarMovieData

City Star

Name
“Malibu”

/StarMovieData/Star[.//City = “Malibu”]/Name

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 21

movie

title
year

Carrie

Fisher

street
city street

city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

starMovieData

star star

name
name

addr. addr. street

city

Star War

StarMovieData

City

Star

Name

“Malibu”

Name = “Carrie Fisher”

/StarMovieData/Star[..//City = “Malibu”]/Name

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 22

movie

title
year

Carrie

Fisher

street
city street

city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

starMovieData

star star

name
name

addr. addr. street

city

Star War

StarMovieData

City

Star

Name

“Malibu”

Name = “Mark Hamil”

/StarMovieData/Star[..//City = “Malibu”]/Name

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 23

Conditions in Path Expressions

Several other useful forms of condition are:

• An integer [i] by itself is true only when applied the ith child of its

parent.

• A tag [T] by itself is true only for elements that have one or more

subelements with tag T.

• An attribute [A] by itself is true only for elements that have an

attribute A.

/StarMovieData/Stars/Star[2]

/StarMovieData/Stars/Star[Address]

/StarMovieData/Stars/Star[@startID]

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 24

/Movies/Movie/Version[1]/@year

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong” >

<Version year = “1933”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Bridegs</Star>

<Star>Jessica Lange</Star>

</Version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

/Movies/Movie/Version/Star?

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 25

Wildcards

In an XPath expression, we can use * to say “any tag”. Likewise,

@* says “any attribute.”

/StarMovieData/*/@*

Results: “cf”, “sw”, “mh”, “sw”, “sw”, “cf mh”

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

… …

</Star>

<Star starID = “mh” starredIn = “sw”>

… …

</Star>

<Movie movieID = “sw” starOf = “cf mh”>

… …

</Movie>

</StarMovieData>

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 26

The XPath expressions are mainly used in HTML,

XQuery and XSLT languages.

{doc(starMovie.xml)/StarMovieData/*/@*}

Example:

• Cf

• Sw

• Mh

• Sw

• Sw

• cf mh

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 27

XQuery

• XQuery is an extension of XPath that has become a

standard for high-level querying of databases containing

XML data.

• XQuery is designed to take data from multiple

databases, from XML files, from remote Web

documents, even from CGI (common gate interface)

scripts, and to produce XML results that you can

process with XSLT.

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 28

XQuery Basics

All values produced by XQuery expressions are sequences

of items.

Items:

primitive values

nodes: document, element, attribute nodes

XQuery is a functional language, which implies that any

XQuery expression can be used in any place that an

expression is expected.

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 29

FLWR Expressions

FLWR (pronounced “flower”) expressions are in some sense

analogous to SQL select-from-where expressions.

An XQuery expression may involve clauses of four types, called

for-, let-, where-, and return-clauses (FLWR).

1. The query begins with zero or more for- and let-clauses. There

can be more than one of each kind, and they can be interlaced

in any order, e.g., for, for, let, for, let.

2. Then comes an optional where-clause.

3. Finally, there is exactly one return-clause.

Return <Greeting>“Hello World”</Greeting>

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 30

Let Clause

• The intent of this clause is that the expression is evaluated and assigned to

the variable for the remainder of the FLWR expression.

• Variables in XQuery must begin with a dollar-sign.

• More generally, a comma-separated list of assignments to variables can appear.

let variable := expression

let $stars := doc(“stars.xml”)

for Clause

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

for variable in expression

let $movies := doc(“movies.xml”)

$stars := doc(“stars.xml”)

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 31

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Stars>

<Star>

<Name>Carrie Fisher</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ave.</Street>

<City>Malibu</City>

</Address>

</Star>

… more stars

</Stars>

Stars.xml

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 32

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

Movies.xml

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 33

Where Clause

This clause is applied to an item, and the condition, which is an expression,

evaluates to true or false.

where condition

return Clause

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return $m/Version/Star

return expression

This clause returns the values obtained by evaluating expression.

<Star>Fay Wray</Star>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parker</Star>

where $s/Address/Street = “123 Maple St.” and

$s/Address/City = “Malibu”

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 34

<? Xml version = “1.0” encoding = “utf-8” … ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return $m/Version/Star

<Star>Fay Wray</Star>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parker</Star>

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 35

Replacement of variables by their Values

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return <Movie title = $m/@title>$m/Version/Star</Movie>

Not correct! The variable will not be replaced by its values.

<Movie title = $m/@title>$m/Version/Star</Movie>

<Movie title = $m/@title>$m/Version/Star</Movie>

<Movie title = $m/@title>$m/Version/Star</Movie>

… …

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 36

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return <Movie title = {$m/@title}>{$m/Version/Star}</Movie>

<Movie title = “King Kong”><Star>Fay Wray</Star></Movie>

<Movie title = “King Kong”><Star>Jeff Brideges</Star></Movie>

<Movie title = “King Kong”><Star>Jessica Lange</Star></Movie>

<Movie title = “Footloose”><Star>Kevin Bacon</Star></Movie>

<Movie title = “Footloose”><Star>John Lithgow</Star></Movie>

<Movie title = “Footloose”><Star>Sarah Jessica Parker</Star></Movie>

… …

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 37

Joins in XQuery

We can join two or more documents in XQuery in much the same

way as in SQL. In each case, we need variables, each of which

ranges over elements of one of the documents or tuples of one of

the relations, respectively.

1. In SQL, we use a from-clause to introduce the needed tuple

variables

2. In XQuery, we use a for-clause.

let $movies := doc(“movies.xml”)

$stars := doc(“stars.xml”)

for $s1 in $movies/Movies/Movie/Version/Star

$s2 in $Stars/Stars/Star

where data($s1) = data($s2/Name)

return $s2/Address/City

Select ssn, lname, Dname

From employees s1, departments s2

Where s1.dno = s2. Dnumber

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 38

<? Xml version = “1.0” encoding = “utf-8” … ?>

<Stars>

<Star>

<Name>Fay Wray</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars>

<? Xml version = “1.0” …. … ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

let $movies := doc(“movies.xml”)

$stars := doc(“stars.xml”)

for $s1 in $movies/Movies/Movie/Version/Star

$s2 in $Stars/Stars/Star

where data($s1) = data($s2/Name)

return $s2/Address/City

Programming Language for XML

<? Xml version = “1.0” encoding = “utf-8” … ?>

<Stars>

<Star>

<Name>Fay Wray</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ave.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars>

Jan. 2024 Yangjun Chen ACS-7102 39

XQuery Comparison Operators

A query: find all the stars that live at 123 Maple St., Malibu.

The following FLWR seems correct. But it does not work.

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star

where $s/Address/Street = “123 Maple St.”

and $s/Address/City = “Malibu”

return $s/Name

Correct query:

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star,

$s1 in $s/Address

where $s1/Street = “123 Maple St.” and

$s1//City = “Malibu”

return $s/Name

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 40

Elimination of Duplicates

XQuery allows us to eliminate duplicates in sequences of any kind,

by applying the built-in distinct values.

Example. The result obtained by executing the following first query

may contain duplicates. But the second not.

let $starsSeq := (

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return $m/Version/Star

)

return <Stars>{$starSeq}</Stars>

let $starsSeq := distinct-values(

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return $m/Version/Star

)

return <Stars>{$starSeq}</Stars>

Select average(distinct salary) from employee;

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 41

Quantification in XQuery

There are expressions that say, in effect, for all (), and

there exists ():

every variable in expression1 satisfies expression2

some variable in expression1 satisfies expression2

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star

where every $c in $s/Address/City

satisfies $c = “Hollywood”

return $s/Name

Find the stars who have houses only in

Hollywood.

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star

where $c in $s/Address/City satisfies

$c = “Hollywood”

return $s/Name

Find the stars with a home in Hollywood.

(Key word some is not used.)

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 42

Select ssn, fname, salary from employee where salary

> all (select salary from employee where dno = 4);

Select fname, lname

from employee

where

exists (select *

from dependent

where essn = ssn);

Programming Language for XML

Select s.ssn, s.lname, count(r.lname)

from employee s, employee r

where s.ssn = r.superssn

group by s.ssn, s.lname;

having count(s.name) < 3;

Jan. 2024 Yangjun Chen ACS-7102 43

Aggregation

XQuery provides built-in functions to compute the usual

aggregations such as count, average, sum, min, or max. They take

any sequence as argument. That is, they can be applied to the result

of any XPath expression.

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

where count($m/Version) > 1

return $m

Find the movies with multiple versions.

Programming Language for XML

<? Xml version = “1.0” …. … ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Bridges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica

Parkr</Star>

</Version>

</Movie>

</Movies>

Jan. 2024 44

Branching in XQuery Expressions

There is an if-then expression in Xquery of the form:

if (expression1) then (expression2)

let $kk := doc(“movies.xml”)/Movies/Movie/

Movie[@title = “King Kong”]

for $v in $kk/Version

return if ($v/@year = max($kk/Version/@year))

then <Latest>{$v}</Latest>

else <Old>{$v}</Old>

Tag the version of King Kong.

Yangjun Chen ACS-7102

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 45

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

Movies.xml

Let $kk :=

doc(“movies.xml”)/Movies/Movie/Movie

[@title = “King Kong”]

For $v in $kk/Version

Return if ($v/@year =

max($kk/Version/@year))

then <Latest>{$v}</Latest>

else <Old>{$v}</Old>

<Latest><Version year = “1993”> … </Latest>

<Old><Version year = “1976”> … </Old>

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 46

Ordering the Result of a Query

It is possible to sort the result as part of a FLWR query

order list of expressions

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie,

$v in $m/Version

order $v/@year

return <Movie title = “{$m/@title}” year = “{$v/@year}” />

Construct the sequence of title-year pairs, ordered by year.

Select *

From employees

order by ssn

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 47

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

Movies.xml

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie,

$v in $m/Version

order $v/@year

return <Movie title = “{$m/@title}”

year = “{$v/@year}” />

<Movie title = “King Kong” year = “1976” />

<Movie title = “Footloose” year = “1984” />

<Movie title = “King Kong” year = “1993” />

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 48

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie,

$v in $m/Version

order $m/@title, $v/@year

return <Movie title = “{$m/@title}” year = “{$v/@year}” />

<Movie title = “Footloose” year = “1984” />

<Movie title = “King Kong” year = “1976” />

<Movie title = “King Kong” year = “1993” />

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 49

An XQuery expression can be embedded in an

HTML file.

.

.

.

{

for $x in doc("books.xml")/bookstore/book/title

order by $x

return {$x}

}

.
.
.

About usage of XQuery

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 50

Extensible Stylesheet Language

XSLT (Extensible Stylesheet Language for Transformation) is a

standard of the World-Wide-Web Consortium.

- Its original purpose was to allow XML documents to be

transformed into HTML or similar forms that allowed the

document to be viewed or printed.

- In practice, XSLT is another query language for XML to extract

data from documents or turn one document form into another

form.

XSLT Basics

Like XML schema, XSLT specifications are XML documents,

called stylsheet. The tag used in XSLT are found in a name-space:

http://www.w3.org/1999/XSL/Transform.

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 51

At the highest level, a stylesheet looks like:

<? Xml version = ‘1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

… …

</xsl:stylesheet>

Templates

A stylesheet will have one or more templates. To apply a stylesheet

to an XML document, we go down the list of templates until we

find one that matches the root.

<xsl:template match = “XPath expression”>

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 52

Templates

XPath expression can be either rooted (beginning with a slash)

or relative. It describes the elements of XML documents to which

this template is applied.

<xsl:template match = “XPath expression”>

Rooted expression – the template is applied to every element of the

document that matches the path (absolute path).

Relative expression – part of an Xpath, evaluated relative to a

reference point (the current node).

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 53

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/”>

<HTML>

<BODY>

This is a document

</BODY>

</HTML>

</xsl:template >

</xsl:stylesheet>

Applying the template, an XML document is transformed to a HTML file:

<HTML>

<BODY>

This is a document

</BODY>

</HTML>

Programming Language for XML

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/Movies/Movie”>

<xsl:value-of select = “@title” />

</xsl:template >

</xsl:stylesheet>

Yangjun Chen ACS-7102 54

Obtaining Values from XML Data

<xsl:value-of select = “expression” />

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

<version year = “2005” />

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

This ability makes XSTL a

query language.

“King Kong”

“Footloose”

Jan. 2024

Programming Language for XML

Yangjun Chen ACS-7102 55

Recursive Use of Templates

<xsl:apply-template select = “expression” />

Powerful transformations require recursive application

of templates at various elements of the input.

Jan. 2024

Programming Language for XML

<? Xml version = “1.0” encoding = “utf-8”

standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Bridges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Park

</Star>

</Version>

</Movie>

</Movies>

Jan. 2024 Yangjun Chen ACS-7102 56

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/Movies”>

<Movies>

<xsl:apply-templates />

</Movies>

</xsl:template >

<xsl:template match = “Movie”>

<Movie title = “<xsl:value-of select = “@title” />”>

<xsl:apply-templates />

</Movie>

</xsl:template>

<xsl:template match = “Version”>

<xsl:apply-template />

</xsl:template>

<xsl:template match = “Star”>

<Star name = “<xsl:value-of select = “.” />”/>

</xsl:template>

</xsl:stylesheet>

use this

template

use this

template

use this

template

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 57

<? Xml version = “1.0” encoding = “utf-8”

standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Bridges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Park</Star>

</Version>

</Movie>

</Movies>

<? Xml version = “1.0” encoding = “utf-8”

standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Star name = “Fay Wray” />

<Star name = “Jeff Brideges” />

<Star name = “Jessica Lange” />

</Movie>

<Movie title = “Footloose”>

<Star name = “Kevin Bacon” />

<Star name = “John Lithgow” />

<Star name = “Sarah Jessica Parkr” />

</Movie>

</Movies>

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 58

Iteration in XSLT

<xsl:for-each select = “expression” >

We can put a loop within a template that gives us freedom

over the order in which we visit certain subelements of

the element to which the template is being applied.

The expression is an XPath expression whose value is a

sequence of items. Whatever is between the opening

<for-each> tag and its matching closing tag is executed

for each item, in turn.

Programming Language for XML

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform >

<xsl:template match = “/”>

<0L>

<xsl:for-each select = “Stars/Star” >

<xsl:value-of select = “Name”>

</xsl:for-each>

</0L><P />

<0L>

<xsl:for-each select =

“Stars/Star/Address”>

<xsl:value-of select = “City”>

</xsl:for-each>

</0L>

</xsl:template >

</xsl:stylesheet>

Jan. 2024 59

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Stars>

<Star>

<Name>Carrie Fisher</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars> 1. Carrie Fishes

2. Mark Hamill

… …

1. Hollywood

2. Malibu

… …

Yangjun Chen ACS-7102

Programming Language for XML

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/”>

<0L>

<xsl:for-each select =

“Stars/Star” >

<xsl:value-of select =

“Name”>

</xsl:for-each>

</0L><P/>

<0L>

<xsl:for-each select =

“Stars/Star/Address”>

<xsl:value-of select =

“City”>

</xsl:for-each>

</0L>

</xsl:template >

</xsl:stylesheet>

Jan. 2024 Yangjun Chen ACS-7102 60

<0L>

Carrie Fisher

Mark Hamil

… more stars

</0L><P/>

<0L>

Hollywood

Malibu

… more cities

</0L>

<Stars>

<Star>

<Name>Carrie Fisher</Name>

<Address>

<Street>123 Maples

St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars>

1. Carrie Fishes

2. Mark Hamill

… …

1. Hollywood

2. Malibu

… …

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 61

Conditions in XSLT

<xsl:if test = “boolean expression” >

We can introduce branching into our templates by using an if tag.

Whatever appears between its tag and its matched closing tag is

executed if and only if the boolean expression is true.

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/”>

<TABLE border = “5”><TR><TH>Stars</TH><TR>

<xsl:for-each select = “Stars/Star” >

<xsl:if test = “Address/City = ‘Hollywood’”>

<TR><TD><xsl:value-of select = “Name”</TD>

</TR>

</xsl:if>

</xsl:for-each>

</TABLE>

</xsl:template >

</xsl:stylesheet>

Stars

Carrie Fishes

…

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 62

<TABLE border = “5”>

<TR><TH>Stars</TH><TR>

<TR>

<TD>

Carrie Fishes

</TD>

</TR>

<TR>

<TD>

… …

</TD>

</TR>

… …

</TABLE>

Stars

Carrie Fishes

…

List all those stars

who have a house

in Hollywood.

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 63

<html>

<body>

<table border="1">

<tr>

<th>Month</th>

<th>Savings</th>

</tr>

<tr>

<td>January</td>

<td>$100</td>

</tr>

</table>

</body>

</html>

Month Savings

January $100

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 64

How to use XSTL to make document transformation?

In this example, creating the XML file that contains the information

about three students and displaying the XML file using XSLT.

<?xml version = "1.0" encoding = "UTF-8"?>
<?xml-stylesheet type = "text/xsl "href = “transform.xsl" ?>
<Student>
<s>
<name> David John</name><branch> CSE</branch>
<age> 23</age><city> Malibu</city>
</s>
<s>
<name> Mary Chen</name><branch> CSE</branch>
<age> 17</age><city> New York</city>
</s>
<s>
<name> Christ Henry</name><branch> IT</branch>
<age> 25</age> <city> Washington</city>
</s>
</student>

students.xml

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 65

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html> <body>

<h1 align="center">Students' Basic Details</h1>

<table border="3" align="center" >

<tr>

<th>Name</th>

<th>Branch</th>

<th>Age</th>

<th>City</th>

</tr>

<xsl:for-each select="student/s">

<tr>

<td><xsl:value-of select="name"/></td>

<td><xsl:value-of select="branch"/></td>

<td><xsl:value-of select="age"/></td>

<td><xsl:value-of select="city"/></td>

</tr>

</xsl:for-each>

</table> </body> </html> </xsl:template> </xsl:stylesheet>

transform.xsl

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 66

Name Branch Age City

David John CSE 23 Malibu

Mary Chen CSE 21 New York

Christ Henry CSE 22 Washington

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 67

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

public class Main {
public static void main(String args[]) throws Exception {

StreamSource source = new StreamSource(args[0]);
StreamSource stylesource = new StreamSource(args[1]);

TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformer = factory.newTransformer(stylesource);

StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

}
}

How to use XSTL to make document transformation?

(in Java)

Two inputs: source style-sheet

Programming Language for XML

Jan. 2024 Yangjun Chen ACS-7102 68

XslTransform xslTran = new XslTransform();

xslTran.Load("transform.xsl");

XmlTextWriter writer = new XmlTextWriter("xslt_output.html",

System.Text.Encoding.UTF8);

xslTran.Transform(students.xml, null, writer);

How to use XSTL to make document transformation?

an XSTL sheet

create a file to store the output

a file containing an XML document to be transformed

