
Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 1

Semistructured-Data Model

• Semistructured data

• XML

• DTD (Document type definitions)

• XML schema

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 2

Semistructured Data

The semistructured-data model plays a special role in database

systems:

1. It serves as a model suitable for integration of databases, i.e.,

for describing the data contained in two or more databases

that contain similar data with different schemas.

2. It serves as the underlying model for notations such as XML

that are being used to share information on the web.

The semistructured data model can represent information more

flexibly than the other models – E-R, UML, relational model,

ODL (Object Definition Language).

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 3

Semistructured Data representation

A database of semistructured data is a collection of nodes.

• Each node is either a leaf or interior

• Leaf nodes have associated data; the type of this data can be any

atomic type, such as numbers and strings.

• Interior nodes have one or more arcs out. Each arc has a label,

which indicates how the node at the head of the arc relates to the

node at the tail.

• One interior node, called the root, has no arcs entering and

represents the entire database.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 4

sw

movie

title

year

Carrie

Fisher
street

city street city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

cf mh

root

star star

name name
address

address
street

city

starIn

starOf

starIn

starOf

Star War

ad1 ad2

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 5

Semistructured Data representation

A label L on the arc from node N to node M can play one of two roles.

1. It may be possible to think of N as representing an object or

entity, while M represents one of its attributes. Then, L represents

the name of the attribute.

2. We may be able to think of N and M as objects or entities and L

as the name of a relationship from N to M.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 6

Semistructured Data model can be used to integrate information

Legacy-database problem: Databases tend over time to be used in so

many different applications that it is impossible to turn them off and

copy or translate their data into another database, even if we could

figure out an efficient way to transform the data from one schema to

another.

In this case, we will define a semistructured data model over all

the legacy databases, working as an interface for users. Then,

any query submitted against the interface will be translated

according to local schemas.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 7

legacy

database

legacy

database

some other

applications

some other

applications

Interfaceuser

Stars(name, address(street, city)) Stars(name, street, city)

root

star star

star1
name

address
star2

name

street

city

street city

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 8

XML (Extensible Markup Language)

XML is a tag-based notation designed originally for marking

documents, much like HTML. While HTML’s tags talk about the

presentation of the information contained in documents – for

instance, which portion is to be displayed in italics or what the

entries of a list are – XML tags intended to talk about the

meanings of pieces of the document.

Tags:

opening tag - < …. >, e.g., <Foo>

closing tag - </ … >, e.g., </Foo>

A pair of matching tags and everything that comes between them is

called an element.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 9

XML with and without a schema

XML is designed to be used in two somewhat different modes:

1. Well-formed XML allows you to invent your own tags, much

like the arc-labels in semistructured data. But there is no

predefined schema. However, the nesting rule for tags must be

obeyed, or the document is not well-formed.

2. Valid XML involves a DTD (Document Type Definition) that

specifies the allowed tags and gives a grammar for how they

may be nested. This form of XML is intermediate between the

strict-schema such as the relational model, and the completely

schemaless world of semistructured data.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 10

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star>

<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>

prologue

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 11

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

• Xml – indicate that the file is an XML document

• Version = “1.0” – the first version of the document

• encoding = “utf-8” – utf (Unicode Transformation Format) is a

common choice of encoding for characters because it is compatible

with ASCII.

• standalone = “yes” – indicate that there is no DTD for this

document. i.e., it is well-formed XML.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 12

movie

title year

Carrie

Fisher
street city street city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

star star

name name
address

address

street

city

Star War

starMovieData

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 13

Attributes

As in HTML, an XML element can have attributes (name-value

pairs) with its opening tag. An attribute is an alternative way to

represent a leaf node of semistructured data. Attributes, like tags,

can represent labeled arcs in a semisructured-data graph.

<Movie>

<Title>“Star Wars”</title>

<Year>1977</Year>

</Movie>

<Movie year = 1977>

<Title>“Star Wars”</title>

</Movie>

<Movie title = “Star War” year = 1977>

</Movie>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 14

Attributes that connect elements

An important use for attributes is to represent connections in a

semistructured data graph that do not form a tree.

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

… …

</Star>

<Star starID = “mh” starredIn = “sw”>

… …

</Star>

<Movie movieID = “sw” starsOf = “cf”, “mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 15

Namespace

There are situations in which XML data involves tags that come from two or

more different sources. So we may have conflicting names. For example, we

would not want to confuse an HTML tag used in a text with an XML tag that

represents the meaning of that text. To distinguish among different vocabularies

for tags in the same document, we can use a namespace for a set of tags.

To indicate that an element’s tag should be interpreted as part of a certain space,

we use the attribute xmlns in its opening tag:

xmlns: name = <Universal Resource Identifier>

Example:

<md : StarMoviedata xmlns : md = http://infolab.stanford.edu/movies>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 16

XML storage

There are three approaches to storing XML to provide some efficiency:

1. Store the XML data in a parsed form, and provide a library of tools to navigate

the data in that form. Two common standards are called SAX (Simple API for

XML), and DOM (Document Object Model), MongoDB.

2. MongoDB – non-tabular databases

In Mongo DB, a document is stored as a set of property-value pairs (JSON format).

[{ title : “post1”,

body: “body of post 1”,

category: “news”,

time: Date()

}

{ title : “post2”,

body: “body of post 2”,

category: “events”,

time: Date()

}]

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 17

3. Represent the document and their elements as relations, and use a conventional,

relational DBMS to store them.

In order to represent XML documents as relations, we should give each document

and each element of a document a unique ID. For each document, the ID could be

its URL or its path in a file system.

A possible relational database schema:

DocRoot(docID, rootElmentID)

ElementValue(elementID, value)

SubElement(parentID, childID, position)

ElementAttribute(elementID, name, value)

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 18

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

< md : StarMovieData xmlns : md = http://infolab.stanford.edu/movies >

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie movieID = “sw” starsOf = “cf”, “mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 19

Doc-id rootElementID

1 1

Doc-id element-id value

1 1 starMovieData

1 2 Star

1 3 Star

1 4 movie

… … …

parentId childId position

1.1 1.2 1

1.1 1.3 2

1.1 1.4 3

… … … ... … …

elemenAttId attName value

1.1 xmlns : md http://... …

1.2 starId “mf”

1.2 starId “mh”

1.3 starredIn “sw”

1.3 starredIn “sw”

1.4 movieId “sw”

1.4 starsOf “sf”, “mh”

DocRoot
elementValue

subElement

elementAttribute

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 20

Transform an XML document to a tree

<book>

<title>

“The Art of Programming”

</title>

<author>

“D. Knuth”

</author>

<year>

“1969”

</year>

</book>

<book>

<title> <author> <year>

“The Art of

Programming”

“D. Knuth” “1969”

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 21

node_value Pointer_to_node

stack S:

Read a file into a character array A:

< b o o k > < t i t l e > “ T h e A r t …

Transform an XML document to a tree

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 22

Algorithm:

Scan array A; Let A[i] be the character currently

encountered;

If A[i] is ‘<’ and A[i+1] is a character then {

generate a node x for A[i..j],

where A[j] is ‘>’ directly after A[i];

let y = S.top().pointer_to_node;

make x be a child of y; S.push(A[i..j], x);

If A[i] is ‘ ‘‘ ’, then {

genearte a node x for A[i..j],

where A[j] is ‘ ’’ ’ directly after A[i];

let y = S.top().pointer_to_node;

make x be a child of y;

If A[i] is ‘<’ and A[i+1] is ‘/’,

then S.pop();

Transform an XML document to a tree

Generating a node

for an opening tag.

Generating a

leaf node for a

string value.

Popping out the stack when

meeting a closing tag.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 23

Document Type Definition (DTD)

A DTD is a set of grammar-like rules to indicate how elements

can be nested.

DTD general form:

<!DOCTYPE root-tag [

<!ELEMENT element-name (components)>

… …

]>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 24

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

Stars.dtd

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 25

<Stars>

<Star>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street>

<City>Hollywood</City>

</Address>

<Movies>

<Movie>

<Title>Star Wars</Title>

<Year>1977</Year>

</Movie>

<Movie>

<Title>Empire Striker</Title>

<Year>1980</Year>

</Movie>

<Movie>

<Title>Return of the Jedi</Title><Year>1983</Year>

</Movie>

</Movies>

</Star>

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 26

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

<Star>

<Name>Mark Hamill</Name>

<Address>

<Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Address>

<Movies>

<Movie>

<Title>Star Wars</Title>

<Year>1977</Year>

</Movie>

<Movie>

<Title>Empire Wars</Title>

<Year>1980</Year>

</Movie>

<Movie>

<Title>Return of the Jedi</Title>

<Year>1983</Year>

</Movie>

</Movie>

</Star>

</Stars>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 27

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Stars>

<Star>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street>

<City>Malibu</City>

<Address>

</Star>

<Star>

<Name>Mark Hamill</Nam>

<Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</Stars>

This document does not confirm

to the DTD.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 28

Terminologies and notations in DTD:

1. #PCDATA means that an element has a value that is a text, and it has no

element nested within. Parsed character data may be thought of as HTML

text. A formatting character like < must be escaped by <. For instance,

<!ELEMENT Title (#PCDATA)>

say that between <Title> and </Title> tags a character string can appear.

2. The keyword Empty, with no parentheses, indicates that the element is one

of those that has no matched closing tag. It has no subelements, nor does it

have a text as a value. For example,

<!ELEMENT Foo Empty>

say that the only way the tag Foo can appear is as <Foo some attributes />.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 29

Terminologies and notations in DTD:

1. A * following an element means that the element may occur any number of

times, including zero times.

2. A + following an element means that the element may occur either one or

more times.

3. A ? following an element means that the element may occur either zero times

or one time, but no more.

4. We can connect a list of options by the ‘or’ symbol | to indicate that exactly

one option appears. For example, if <Movie> element has <Genre>

subelement, we might declare these by

<!ELEMENT Genre (Comedy | Drama | SciFi | Teen)>

To indicate that each <Genre> element has one of these four subelements.

<!ELEMENT Stars (Star*)

<!ELEMENT Star (Name, Address+, Movies)>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 30

Terminologies and notations in DTD:

5. Parentheses can be used to group components, For example,

if we declare address to have the form:

<!ELEMENT Address (Street, (City | Zip))>

Then, <Address> elements would each have <Street> subelement

followed by either a <City> or <Zip> subelement, but not both.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 31

Using a DTD

If a document is intended to conform to a certain DTD, we

b) In the opening line, refer to the DTD, which must be stored

separately in the file system accessible to the application that

is processing the document.

<?xml version = “1.0” encoding = “utf-8” standalone = “no”?>

<!DOCTYPE Star SYSTEM “star.dtd”>

SYSTEM – keyword indicating that the DTD can be find in file

star.dtd (this can also be a valid URL if the .dtd file is remote.)

a) Include the DTD itself as a preamble to the document, or

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 32

<?xml version="1.0" ?>
<!DOCTYPE r [
<!ELEMENT r ANY >
<!ELEMENT a ANY >
<!ELEMENT b ANY >
<!ELEMENT c (a*)>
<!ELEMENT d (b*)>
]>
<r>

<a>

<a><a>

<c>

<a>

</c>
<a>

<a>

</r>

A DTD is included as a preamble.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 33

<?xml version = "1.0" encoding = "UTF-8" standalone = "no" ?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

<name>Tanmay Patil</name>

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 34

Attribute Lists

An element may be associated with an attribute list:

<!ELEMENT Movie EMPTY>

<!ATTLIST Movie

title CDATA #REQUIRED

year CDATA #REQUIRED

genre (comedy | drama | sciFi | teen) #IMPLIED

>

<Movie title = “Star Wars” year = “1977” genre = “sciFi”/>

<!ATTLIST element-name attribute-name type>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 35

Identifiers

and Reference

<!DOCTYPE StarMovieData [

<!ELEMENT StarMovieData (Star*, Movie*)>

<!ELEMENT Star (Name, Address+)>

<!ATTLIST Star

starId ID #REQUIRED

StarredIn IDREFS #IMPLIED

>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMNT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movie (Title, Year)>

<!ATTLIST Movie

movieId ID #REQUIRED

startOf IDREFS #REQUIRED

>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

Semistructured-Data Model

Yangjun Chen ACS-7102 36

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name>

<address>

<Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</address>

</Star>

<Movie movieID = “sw” starOf = “cf mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>Jan. 2024

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 37

XML Schema

XML Schema is an alternative way to provide a schema for XML

documents.

More powerful – give the schema designer extra capabilities.

- allow us to declare types, such as integers or float for simple

elements.

- allow arbitrary restriction on the number of occurrences of

subelements.

- give us the ability to declare keys and foreign keys.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 38

The Form of an XML schema

• An XML schema description of a schema is itself an XML

document. It uses the namespace at the URL

http://www.w3.org/2001/XMLSchema

that is provided by the World-Wide-Web Consortium.

• Each XML-schema document has the form:

<? xml version = ‘1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/

XMLSchema”>

… …

</xs: schema>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 39

Elements

An important component in an XML schema is the element,

which is similar to an element definition in a DTD.

The form of an element definition in XML schema is:

<xs: element name = element name type = element type>

constraints and/or structure information

</xs: element>

<xs: element name = “Title” type = “xs: string” />

<xs: element name = “Year” type = “xs: integer” />

<!DOCTYPE root-tag [

… …

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

… …

]>

DTD

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 40

Complex Types

A complex type in XML Schema can have several forms, but the

most common is a sequence of elements.

<xs: complexType name = type name >

<xs: sequence>

list of element definitions

</xs: sequence>

</xs: complexType>

<xs: complexType name = type name >

list of attribute definitions

</xs: complexType>

<!DOCTYPE root-tag [

<!ELEMENT element-name (components)>

… …

]>

DTD

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 41

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs:complexType name = “movieType”>

<xs: sequence>

<xs: element name = “Title” type = “xs: string” />

</xs: element name = “Year” type = “xs: integer” />

</xs: sequence>

</xs: complexType>

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType”

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

</xs: element>

</xs: schema>

A schema for movies in XML schema.

Itself is a document.

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 42

The above schema (in XML schema) is equivalent to the

following DTD.

<!DOCTYPE Movies [

<!ELEMENT Movies (Movie*) >

<!ELEMENT Movie (Title, Year) >

<!ELEMENT Title (#PCDATA) >

<!ELEMENT Year (#PCDATA) >

]>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 43

Attributes

A complex type can have attributes. That is, when we define a

complex type T, we can include instances of element <xs:

attribute>. Thus, when we use T as the type of an element E (in a

document), then E can have (or must have) an instance of this

attribute. The form of an attribute definition is:

<xs: attribute name = attribute name type = type name

other information about attribute />

<xs: attribute name = “title” type = “xs: integer” default = “0” />

<xs: attribute name = “year” type = “xs: integer” use = “required” />

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 44

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs: complexType name = “movieType”>

<xs: attribute name = “title” type = “xs: string” use = “required” />

<xs: attribute name = “year” type = “xs: integer” use = “required” />

</xs: complexType>

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType”

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

</xs: element>

</xs: schema>

A schema for movies in XML schema.

Itself is a document.

<xs:complexType name = “movieType”>

<xs: sequence>

<xs: element name = “Title” type = “xs: string” />

</xs: element name = “Year” type = “xs: integer” />

</xs: sequence>

</xs: complexType>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 45

The above schema (in XML schema) is equivalent to the

following DTD.

<!DOCTYPE Movies [

<!ELEMENT Movies (Movie*) >

<!ELEMENT Movie EMPTY />

<!ATTLIST Movie

Title CDATA #REQUIRED

Year CDATA #REQUIRED

>

]>

<!DOCTYPE Movies [

<!ELEMENT Movies (Movie*) >

<!ELEMENT Movie (Title, Year) >

<!ELEMENT Title (#PCDATA) >

<!ELEMENT Year (#PCDATA) >

]>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 46

Restricted Simple Types

It is possible to create a restricted version of a simple type such

as integer or string by limiting the values the type can take. These

types can then be used as the type of an attribute or element.

1. Restricting numerical values by using minInclusive to state the lower

bound, maxInclusive to state the upper bound.

2. Restricting values to an numerated type.

<xs: simpleType name = type name >

<xs: restriction base = base type >

upper and/or lower bounds

</xs: restriction>

</xs: simpleType>

<xs: enumeration value = some value />

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 47

<xs: simpleType name = “movieYearType” >

<xs: restriction base = “xs: integer” >

<xs:minInclusive value = “1915” />

</xs: restriction>

</xs: simpleType>

<xs: simpleType name = “genretype” >

<xs: restriction base = “xs: string” >

<xs: enumeration value = “comedy” />

<xs: enumeration value = “drama” />

<xs: enumeration value = “sciFi” />

<xs: enumeration value = “teen” />

</xs: restriction>

</xs: simpleType>

Semistructured-Data Model

Jan. 2024 48

Keys in XML Schema

An element can have a key declaration, which is a field or several

fields to uniquely identify the element among a certain class C of

elements).

field: an attribute or a subelement.

selector: a path to reach a certain node in a

document tree.

<xs: key name = key name >

<xs: selector xpath = path description >

<xs: field xpath = path description >

more field specification

</xs: key>

Create table EMPLOYEE

(…,

DNO INT NOT NULL DEFAULT 1,

CONSTRAINT EMPPK

PRIMARY KEY(SSN),

CONSTRAINT EMPSUPERFK

FOREIGN KEY(SUPERSSN)

REFERENCES

EMPLOYEE(SSN)

ON DELETE SET NULL ON

UPDATE

CASCADE,

CONSTRAINT EMPDEPTFK

FOREIGN KEY(DNO) REFERENCES

DEPARTMENT(DNUMBER)

ON DELETE SET DEFAULT

ON UPDATE CASCADE);

Yangjun Chen ACS-7102

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 49

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs: simpleType name = “genretype” >

<xs: restriction base = “xs: string” >

<xs: enumeration value = “comedy” />

<xs: enumeration value = “drama” />

<xs: enumeration value = “sciFi” />

<xs: enumeration value = “teen” />

</xs: restriction>

</xs: simpleType>

<xs: complexType name = “movieType”>

<xs: attribute name = “title” type = “xs: string” />

<xs: attribute name = “year” type = “xs: integer” />

<xs: attribute name = “Genre” type = “genreType”

minOccurs = “0” maxOccurs = “1” />

</xs: complexType>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 50

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType”

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

<xs: key name = “movieKey”>

<xs: selector xpath = “Movie” />

<xs: field xpath = “@Title” />

<xs: field xpath = “@Year” />

</xs: key>

</xs: element>

</xs: schema>
<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

… …

<Movie Title = “Star Wars” Year = 1977 Genre = “comedy” />

… …

</Movies>

/Movies/Movie

/Movies/Movie@Title

/Movies/Movie@Year

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 51

Foreign Keys in XML Schema

We can declare that an element has, perhaps deeply nested within

it, a field or fields that serve as a reference to the key for some

other element. It is similar to what we get with ID’s and IDREF’s

in DTD.

In DTD: untyped references

In XML schema: typed references

<xs: keyref name = foreign-key name

refer = key name>

<xs: selector xpath = path description >

<xs: field xpath = path description >

more field specification

</xs: keyref>

Create table EMPLOYEE

(…,

DNO INT NOT NULL DEFAULT 1,

CONSTRAINT EMPPK

PRIMARY KEY(SSN),

CONSTRAINT EMPSUPERFK

FOREIGN KEY(SUPERSSN)

REFERENCES

EMPLOYEE(SSN)

ON DELETE SET NULL ON

UPDATE

CASCADE,

CONSTRAINT EMPDEPTFK

FOREIGN KEY(DNO) REFERENCES

DEPARTMENT(DNUMBER)

ON DELETE SET DEFAULT

ON UPDATE CASCADE);

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 52

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs: element name = “Stars”>

<xs: complxType>

<xs: sequence>

<xs: element name = “Star” minOccurs = “1” maxOccurs = “unbounded”>

<xs: complexType>

<xs: sequence>

<xs: element name = “Name” type = “xs: string” />

<xs: element name = “Address” type = “xs: string” />

<xs: element name = “StarredIn” minOccurs = “0” maxOccurs = “1”>

<xs: complexType>

<xs: attribute name = “title” type = “xs: string” />

<xs: attribute name = “year” type = “xs: integer” />

</xs: complexType>

</xs: element>

</xs: sequence>

</xs: complexType>

</xs: element>

</xs: sequence>

</xs: complexType>

Semistructured-Data Model

Jan. 2024 53

<xs: keyref name = “movieRef” refers = “movieKey”>

<xs: selector xpath = “Star/StarredIn” />

<xs: field xpath = “@title” />

<xs: field xpath = “@year” />

</xs: keyref>

</xs: element>

</xs: schema> <? Xml version = “1.0” encoding = “utf-8” standalone =

“yes” ?>

<Stars>

<Star>

<Name>Mark Hamill</Name>

<Address>456 Oak Rd. Brentwood</Address>

<StarredIn title = “star war” year = “1977”/>

</Star>

… …

</Stars>

Yangjun Chen ACS-7102

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 54

About usage of XML schema

<?xml version="1.0"?>

<note xmlns: xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi: schemaLocation = "https://www.w3schools.com/xml note.xsd">

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

Semistructured-Data Model

Jan. 2024 Yangjun Chen ACS-7102 55

The following example is an XML Schema file called

"note.xsd" that defines the elements of the above XML

document ("note.xml"):

<?xml version="1.0"?>

<xs: schema xmlns: xs = "http://www.w3.org/2001/XMLSchema">

<xs: element name = "note">

<xs:complexType>

<xs:sequence>

<xs:element name = "to" type = "xs:string"/>

<xs:element name = "from" type = "xs:string"/>

<xs:element name = "heading" type = "xs:string"/>

<xs:element name = "body" type = "xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

