
B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 1

Database Index Techniques

• B+ - tree

• Multiple-key indexes

• kd – tree

• Quad - tree

• R – tree

• Bitmap

• Inverted files

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 2

B+-Tree Construction and Record Searching

in Relational DBs

• Motivation

• What is a B+-tree?

• Construction of a B+-tree

• Search with a B+-tree

• B+-tree Maintenance

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 3

Motivation

• Scanning a file is time consuming.

• B+-tree provides a short access path.

Index

Inverted index

Signature file

B+-tree

Hashing

… …

file of records

page1

page2

page3

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 4

Employee

ename ssn bdate address dnumber

file of records

Aaron, Ed

Abbott, Diane

Adams, John

Adams, Robin

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 5

Motivation

• A B+-tree is a tree, in which each node is a page.

• The B+-tree for a file is stored in a separate file.

B+-tree

file of records
page1

page2

page3

root

internal nodes

leaf nodes

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 6

B+-tree Structure

non-leaf node (internal node or a root)

• < P1, K1, P2, K2, …, Pq-1, Kq-1, Pq > (q  pinternal)

• K1 < K2 < ... < Kq-1 (i.e. it’s an ordered set)

• For any key value, X, in the subtree pointed to by Pi

•Ki-1 < X Ki for 1 < i < q

•X  K1 for i = 1

•Kq-1 < X for i = q

• Each internal node has at most pinternal pointers.

• Each node except root must have at least pinternal/2 pointers.

• The root, if it has some children, must have at least 2 pointers.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 7

A B+-tree

5

3 7 8

6 7 9 125 81 3

pinternal = 3,

pleaf = 2.

1 5 6 12 9 7 3 8 data file

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 8

B+-tree Structure

leaf node (terminal node)

• < (K1, Pr1), (K2, Pr2), …, (Kq-1, Prq-1), Pnext >

• K1 < K2 < ... < Kq-1

• Pri points to a record with key value Ki, or Pri points to a page

containing a record with key value Ki.

• Maximum of pleaf key/pointer pairs.

• Each leaf has at least pleaf/2 keys.

• All leaves are at the same level (balanced).

• Pnext points to the next leaf node for key sequencing.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 9

B+-tree Construction

• Inserting key values into nodes

• Node splitting

- Leaf node splitting

- Internal node splitting

- Node generation

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 10

B+-tree Construction

• Inserting key values into nodes

Example:

Diane, Cory, Ramon, Amy, Miranda, Ahmed,

Marshall, Zena, Rhonda, Vincent, Mary

B+-tree with pinternal = pleaf =3.

Internal node will have minimum 2 pointers and maximum 3

pointers - inserting a fourth will cause a split.

Leaf can have at least 2 key/pointer pairs and a maximum of 3

key/pointer pairs - inserting a fourth will cause a split.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 11

insert Diane

Diane

Pointer to data

Pointer to next leaf

in ascending key

sequence

insert Cory

Cory , Diane

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 12

insert Ramon

Cory , Diane , Ramon

inserting Amy will cause the node to overflow:

Amy , Cory , Diane , Ramon
This leaf must split

see next =>

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 13

Continuing with insertion of Amy - split the node and promote a key

value upwards (this must be Cory because it’s the highest key value in

the left subtree)

Amy , Cory , Diane , Ramon

Amy , Cory Diane , Ramon

Cory

Tree has grown one

level, from the

bottom up

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 14

•Splitting Nodes

There are three situations to be concerned with:

• a leaf node splits,

• an internal node splits, and

• a new root is generated.

When splitting, any value being promoted upwards will come

from the node that is splitting.

• When a leaf node splits, a ‘copy’ of a key value is promoted.

• When an internal node splits, the middle key value ‘moves’

from a child to its parent node.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 15

•Leaf Node Splitting

When a leaf node splits, a new leaf is allocated:

• the original leaf is the left sibling, the new one is the right

sibling,

• key and pointer pairs are redistributed: the left sibling will

have smaller keys than the right sibling,

• a 'copy' of the key value which is the largest of the keys in

the left sibling is promoted to the parent.

Two situations arise: the parent exists or not.

• If the parent exists, then a copy of the key value (just

mentioned) and the pointer to the right sibling are promoted

upwards.

• Otherwise, the B+-tree is just beginning to grow.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 16

33

12 22 33 44 48 55 12 22 44 48 55

22 33

insert 31

12 22 33

insert 31

31 33

12 22

22

31 33

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 17

Internal Node splitting

If an internal node splits and it is not the root,

• insert the key and pointer and then determine the middle key,

• a new 'right' sibling is allocated,

• everything to its left stays in the left sibling,

• everything to its right goes into the right sibling,

• the middle key value along with the pointer to the new right

sibling is promoted to the parent (the middle key value 'moves'

to the parent to become the discriminator between the left and

right sibling)

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 18

Note that ’26’ does not remain in B. This is different from

the leaf node splitting.

insert

55

22 33

26

26 55

22 33

A

B B

A

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 19

Internal node splitting

When a new root is formed, a key value and two pointers must

be placed into it.

Insert

56

26 56

55

26 55

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 20

B+-trees:

1. Data structure of an internal node is different from that of a leaf.

2. The meaning of pinternal is different from pleaf.

3. Splitting an internal node is different from splitting a leaf.

4. A new key value to be inserted into a leaf comes from the data

file.

5. A key value to be inserted into an internal node comes from a

node at a lower lever.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 21

A sample trace

Diane, Cory, Ramon, Amy, Miranda,

Marshall, Zena, Rhonda, Vincent, Simon, mary

into a b+-tree with pinternal = pleaf =3.

Amy , Cory Diane , Ramon

Cory

Miranda

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 22

Amy , Cory

Cory

Diane , Miranda , Ramon

Marshall

Amy , Cory Diane ,Marshall Miranda , Ramon

Cory Marshall

Zena

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 23

Amy , Cory Diane , Marshall Miranda , Ramon , Zena

Cory Marshall

Rhonda

Amy , Cory Diane , Marshall Rhonda , Zena

Cory Marshall Ramon

Miranda , Ramon

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 24

Amy , Cory Diane , Marshall Rhonda , Zena

Marshall

Miranda , Ramon

Cory Ramon

Vincent

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 25

Amy , Cory Diane , Marshall

Rhonda , Vincent ,Zena

Marshall

Miranda , Ramon

Cory Ramon

Simon

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 26

Marshall

Miranda , Ramon

Ramon Simon

Rhonda , Simon Vincent , Zena

Mary

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 27

Searching a B+-tree

• searching a record with key = 8:

5

3 7 8

6 7 9 125 81 3

pinternal = 3,

pleaf = 2.

1 5 6 12 9 7 3 8 data file

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 28

B+-tree Maintenance

• Inserting a key into a B+-tree

(Same as discussed on B+-tree construction)

• Deleting a key from a B+-tree

i) Find the leaf node containing the key to be removed and

delete it from the leaf node.

ii) If underflow, redistribute the leaf node and one of its

siblings (left or right) so that both are at least half full.

iii) Otherwise, the node is merged with its siblings and the

number of leaf nodes is reduced.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 29

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 7 8

6 7 9 124 81 3

Records in a file

pinternal = 3,

pleaf = 2.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 30

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 7 8

6 7 9 1241 3

Records in a file

pinternal = 3,

pleaf = 2.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 31

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 7 9

6 7 124 91 3

Deleting 8 causes the node redistribute.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 32

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 7

6 74 91 3

12 is removed.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 33

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 6

64 71 3

9 is removed.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 34

Entry deletion

- deletion sequence: 8, 12, 9, 7

5

3 6

641 3

Deleting 7 makes this pointer no use.

Therefore, a merge at the level above

the leaf level occurs.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 35

Entry deletion

- deletion sequence: 8, 12, 9, 7

For this merge, 5 will be taken as a key value in A since

any key value in B is less than or equal to 5 but any key

value in C is larger than 5.

641 3

53 5
A

B

C

5

This point becomes useless.

The corresponding node

should also be removed.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 36

Entry deletion

- deletion sequence: 8, 12, 9, 7

641 3

53 5

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 37

A B+-tree stored in main memory as a link list:

3, 5

1 3

4

6

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 38

Creating link lists in C:

1. Create data types using “struct”:

struct node

{

name string[200];

next node;

link edge;

}

struct edge

{

link_to_node node;

link_to_next edge;

}

2. Allocate place for nodes:

- Using “allocating commands” to get memory place for nodes

x = (struct node *) calloc(1, sizeof(struct node));

- Using fields to establish values for the nodes

x.name = “company”;

y = (struct edge *) calloc(1, sizeof(struct edge));

x.link = y;

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 39

Store a B+-tree on hard disk

Depth-first-search:

DFS(v) (*recursive strategy*)

Begin

print(v); (*or store v in a file.*)

let v1, …, vk be the children of v;

for (i = 1 to k) {DFS(vi);}

end
56

26 200

18 28 190 213

12 24 27

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 40

Store a B+-tree on hard disk

Depth-first-search:

(*non-recursive strategy*)

push(root); (*push the root into stack.*)

while (stack is not empty) do

{ v := pop();

print(v); (*or store v in a file.*)

let v1, …, vk be the children of v;

for (i = k to 1) {push(vi)};

}

56

26 200

18 28 190 213

12 24 27

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 41

5

3

1 3

5

7 8

6 7

8

9 12

B+-tree stored in a file:

1 5 6 12 9 7 3 8Data file:

0 1 2 3

0

1

2

3

4

5

6

7

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 42

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

5

3

1 0 3

5 0

5 7 6 8 7

6 1 7 2

8 3

9 2 12 1

1 5 6 12 9 7 3 8Data file:

1 4

2 3

3

0 1 2 3

0

1

2

3

4

5

6

7

B+-tree stored in a file:

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 43

Store a B+-tree on hard disk

Algorithm:

push(root, -1, -1);

while (S is not empty) do

{ x := pop();

store x.data in file F;

assume that the address of x in F is ad;

if x.address-of-parent  -1 then {

y := x.address-of-parent;

z := x.position;

write ad in page y at position z in F;

}

let x1, …, xk be the children of x;

for (i = k to 1) {push(xi, ad, i)};

}

data address-of-

parent

position

stack: S

data: all the key values in a node

address-of-parent: a page number

in the file F, where the parent of the

node is stored.

position: a number indicating what

is the ranking of a child. That is,

whether it is the first, second, …,

child of its parent.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 44

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

5

0 1 2 3

0

1

2

3

4

5

6

7

B+-tree stored in a file:

5
3 0 1

7, 8 0 2

Stack:

-1 -1

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 45

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

3 0 1

7, 8 0 2
5 1 2

1, 3 1 1

7, 8 0 2

5

3

10

1

2

3

4

5

6

7

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 46

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

5 1 2

7, 8 0 2
5 1 2

1, 3 1 1

7, 8 0 2

5

3

1 0 3

1

2

3

0

1

2

3

4

5

6

7

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 47

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

5 1 2

7, 8 0 2 7, 8 0 2

5

3

1 0 3

5 0

1

2 3

3

0

1

2

3

4

5

6

7

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 48

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

7, 8 0 2
8 4 2

6, 7 4 1

9,12 4 3

5

3

1 0 3

5 0

7 8

1 4

2 3

3

0

1

2

3

4

5

6

7

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 49

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

5

3

1 0 3

5 0

5 7 8

6 1 7 2

1 4

2 3

3

0

1

2

3

4

5

6

7

8 4 2

9,12 4 3
8 4 2

6, 7 4 1

9,12 4 3

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 50

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

8 4 2

9,12 4 3 9,12 4 3

5

3

1 0 3

5 0

5 7 6 8

6 1 7 2

8 3

1 4

2 3

3

0

1

2

3

4

5

6

7

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 51

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

9,12 4 3 empty stack

5

3

1 0 3

5 0

5 7 6 8 7

6 1 7 2

8 3

9 2 12 1

1 4

2 3

3

0

1

2

3

4

5

6

7

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 52

Summary

• B+-tree structure

• B+-tree construction

A process of key insertion into a B+-tree data structure

• B+-tree maintenance

Deletion of keys from a B+-tree:

Redistribution of nodes

Merging of nodes

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 53

B+-tree operations

•search - always the same search length - tree height

•retrieval - sequential access is facilitated - how?

•insert - may cause overflow - tree may grow

•delete - may cause underflow - tree may shrink

What do you expect for storage utilization?

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 54

Index Structures for Multidimensional Data

• Multiple-key indexes

• kd-trees

• Quad trees

• R-trees

• Bit map

Indexes over texts

• Inverted files

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 55

Multiple-key indexes

(Indexes over more than one attributes)

Employee

ename ssn age salary dnumber

Aaron, Ed

Abbott, Diane

Adams, John

Adams, Robin

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 56

Multiple-key indexes

(Indexes over more than one attributes)

Index on age
Index on salary

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 57

Multiple-key indexes

25

30

45

50

60

70

85

60

400

60

350

260

75

100

120

275

260

110

140

D
ata file

pointer to an index over

a set of salaries of all

those employees of age

between 50 and 60

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 58

kd-Trees

(A generalization of binary search trees)

A kd-tree is a binary tree in which interior nodes have an associated

attribute a and a value v that splits the data points into two parts:

those with a-value less than v and those with a-value equal to or

larger than v.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 59

kd-Trees

salary 150

age 60 age 47

salary 80 salary 300

age 38

70, 110

85, 140

50, 275

60, 260

50, 100

50, 120

30, 260 25, 400

45, 350

25, 60 45, 60

50, 75

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 60

kd-trees

0

500k

100

salary

age

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 61

salary

age

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 62

Insert a new entry into a kd-tree:

insert(35, 500):
salary 150

age 60 age 47

salary 80 salary 300

age 38

70, 110

85, 140

50, 275

60, 260

50, 100

50, 120

30, 260 25, 400

45, 350

25, 60 45, 60

50, 75

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 63

Insert a new entry into a kd-tree:

salary 150

age 60 age 47

salary 80 salary 300

age 38

70, 110

85, 140

50, 275

60, 260

50, 100

50, 120

30, 260

25, 400

35, 500
25, 60 45, 60

50, 75

insert(35, 500):

45, 350

age 35

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 64

Quad-trees

In a Quad-tree, each node corresponds to a square region in two

dimensions, or to a k-dimensional cube in k dimensions.

• If the number of data entries in a square is not larger than what

will fit in a block, then we can think of this square as a leaf node.

• If there are too many data entries to fit in one block, then we treat

the square as an interior node, whose children correspond to its

four quadrants.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 65

Quad-trees

0

400k

100

salary

age

name age salary… …

… 25 400… …

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 66

Quad-trees

50, 200

50, 75

50, 100

25, 60

46, 60
75, 100 25, 300

50, 275

60, 260

85, 140 50, 120

70, 110

30, 260 25, 400

45, 350

SW
SE NE

NW

SW – south-west

SE – south-east

NW – north-west

NE – north-east

0 100

400k

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 67

R-trees

An R-tree is an extension of B-trees for

multidimensional data.

• In an R-tree, any interior node corresponds to some interior

regions, or just regions, which are usually a rectangle

• An R-tree corresponds to a whole area (a rectangle for two-di-

mensional data.)

• Each region x in an interior node n is associated with a link to a

child of n, which corresponds to all the subregions within x.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 68

R-trees

In an R-tree, each interior node

contains several subregions.

In a B+-tree, each interior node

contains a set of keys that divides

a line into segments.

k1 k2 kj kj+1 kqkj-1

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 69

Suppose that the local cellular phone company adds a POP (point

of presence, or base station) at the position shown below.

0 100

100

school POP

house1

house2road1
ro

ad
2

pipeline

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 70

R-trees

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

0 100

100

school
POP

house1

house2road1
ro

ad
2

pipeline

Records in a file

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 71

Insert a new region r into an R-tree.

0 100

100

school POP

house1

house2road1

ro
ad

2
pipeline

house3

((70, 5), (95, 15))

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 72

Insert a new region r into an R-tree.

1. Search the R-tree, starting at the root.

2. If the encountered node is internal, find a subregion into which

r fits.

• If there is more than one such region, pick one and go to its

corresponding child.

• If there is no subregion that contains r, choose any subregion

such that it needs to be expanded as little as possible to contain

r.

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

((70, 5), (95, 15))

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 73

((0, 0), (95, 50)) ((20, 20), (100, 80))

school house2 pipeline pop

Two choices:

• If we expand the lower subregion, corresponding to the first

leaf, then we add 1050 square units to the region.

• If we extend the other subregion by lowering its bottom by 15

units, then we add 1200 square units.

road1 road2 house1 house3

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 74

Insert a new region r into an R-tree.

0 100

100

school POP

house1

house2road1

ro
ad

2
pipeline

house3 ((40, 40), (50, 50))

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 75

Insert a new region r into an R-tree.

3. If the encountered node v is a leaf, insert r into it. If there is no

room for r, split the leaf into two and distribute all subregions in

them as evenly as possible. Calculate the ‘parent’ regions for the

new leaf nodes and insert them into v’s parent. If there is the

room at v’s parent, we are done. Otherwise, we recursively split

nodes going up the tree.

((0, 0), (100, 100))

road1 road2 house1 school house2 pipeline

Add POP (point of

presence, or base

station)

Suppose that each

leaf has room for

6 regions.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 76

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

• Split the leaf into two and distribute all the regions evenly.

• Calculate two new regions each covering a leaf.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 77

house1

((70, 5), (95, 15))
R = 

((70, 5), (95, 15))

house1

Insert the first object into an R-tree:

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 78

Bit map

1. Imagine that the records of a file are numbered 1, …, n.

2. A bitmap for a data field F is a collection of bit-vectors of

length n, one for each possible value that may appear in the

field F.

3. The vector for a specific value v has 1 in position i if the ith

record has v in the field F, and it has 0 there if not.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 79

Example

Employee

ename ssn age salary dnumber

Aaron, Ed

Abbott, Diane

Adams, John

Adams, Robin

Brian, Robin

Brian, Mary

Widom, Jones

30

30

40

50

55

55

60

60

60

75

75

78

80

100

Bit maps for age:

30: 1100000

40: 0010000

50: 0001000

55: 0000110

60: 0000001

Bit maps for salary:

60: 1100000

75: 0011000

78: 0000100

80: 0000010

100: 0000001

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 80

Query evaluation

0000110

0000010

Select ename

From Employee

Where age = 55 and salary = 80

In order to evaluate this query, we intersect the vectors for

age = 55 and salary = 80.

vector for age = 55

vector for salary = 80

0000010

This indicates the 6th tuple is the answer.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 81

Range query evaluation

Select ename

From Employee

Where 40  age  50 and 50  salary  78

We first find the bit-vectors for the age values in (30, 50); there are only two:

0010000 and 0001000 for 40 and 50, respectively.

Take their bitwise OR: 0010000  0001000 = 0011000.

Next find the bit-vectors for the salary values in (50, 78) and take their bitwise

OR: 1100000  0011000  0000100 = 1111100.

0011000

1111100

0011000

The 3rd and 4th tuples are the answer.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 82

Compression of bitmaps

Suppose we have a bitmap index on field F of a file with n records,

and there are m different values for field F that appear in the file.

v1

.

.

.

v2

.

.

.

vm

.

.

.… …n bits O(mn) space

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 83

Compression of bitmaps

Run-length encoding:

Run in a bit vector: a sequence of i 0’s followed by a 1.

000000010001

Run compression: a run r is represented as another bit string r’

composed of two parts.

part 1: i expressed as a binary number, denoted as b1(i).

part 2: Assume that b1(i) is j bits long. Then, part 2 is a sequence

of (j – 1) 1’s followed by a 0, denoted as b2(i).

r’ = b2(i)b1(i).

This bit vector contains two runs.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 84

Compression of bitmaps

Run-length encoding:

Run in a bit vector s: a sequence of i 0’s followed by a 1.

000000010001

r’ = b2(i)b1(i).

This bit vector contains two runs.

r1 = 00000001

b11 = 7 = 111, b12 = 110

r2 = 0001

b11 = 3 = 11, b12 = 10

r1’ = 110111

r2’ = 1011

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 85

000000010001

r1’ r2’ = 1101111011

Decoding a compressed sequence s:

1. Scan s from the beginning to find the first 0.

2. Let the first 0 appears at position j. Check the next j bits. The

corresponding value is a run.

3. Remove all these bits from s. Go to (1).

Starting at the beginning, find the first 0

at the 3rd bit, so j = 3. The next 3 bits are

111, so we determine that the first integer

is 7. In the same way, we can decode1011.

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 86

r2’ = 1011 r1r2= 000000010001

r1= 00000001

r2= 0001



r1’ r2’ = 1101111011

Uncompression:

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 87

Question:

We can put all the compressed bit vectors together to get a bit

sequence:

s = s1s2 … sm,

where si is the compressed bit string for the ith bit vector.

When decoding a certain sj, how to differentiate between

consecutive bit vectors?

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 88

Inverted files

An inverted file - A list of pairs of the form: <key word, pointer>

cat

dog

… the cat is

fat

… was raining

cats and dogs …

… Fido the

Dogs …
a bucket of pointers

L(cat) = {1, 3, 5} L(dog) = {3, 5, 8, 9}

L(cat  dog) = {1, 3, 5}  {3, 5, 8, 9} = {3, 5}

B+-Trees and Trees for Multidimensional Data

Jan. 2024 Yangjun Chen ACS-4902 89

Inverted files

When we use “buckets” of pointers to occurrences of each word,

we may extend the idea to include in the bucket array some

information about each occurrence.

cat

dog

… the cat is

Fat …

… was raining

cats and dogs …

… Fido the

Dogs …

title

header

anchor

text

5

10

3

57

type position
…

…

…

…

