Outline: Transitive Closure Compression

- Motivation
- DAG decomposition into node-disjoint chains
 - Graph stratification
 - Virtual nodes
 - Maximum set of node-disjoint paths

Jan. 2023

Motivation

• A simple method

- store a transitive closure as a matrix

DAG Decomposition into Node-Disjoint Chains

A DAG is a directed acyclic graph (a graph containing no cycles). On a chain, if node v appears above node u, there is a path from v to u in G.

Decomposition of a DAG into a set of node-disjoint chains

Based on such a chain decomposition, we can assign each node an index as follows:

- (1) Number each chain and number each node on a chain.
- (2) The *j*th node on the *i*th chain will be assigned a pair (*i*, *j*) as its index.

Each node *v* on the *i*th chain will also be associated with an index sequence of length $k : (1, j_1) \dots (i - 1, j_{i-1}) (i + 1, j_{i+1}) \dots (k, j_k)$ such that any node with index (x, y) is a descendant of *v* if x = i and y < j or $x \neq i$ but $y \leq j_x$, where *k* is the number of the disjoint chains.

$$(1, 1) \bullet {}^{a} (2, 2)(3, 3) \qquad (2, 1) \bullet {}^{f} (1, 2)(3, 3) \qquad (3, 1) \bullet {}^{g} (1, _)(2, 3)$$

$$(1, 2) \bullet {}^{c} (2, 3)(3, _) \qquad (2, 2) \bullet {}^{b} (1, 3)(3, 3) \qquad (3, 2) \bullet {}^{h} (1, 3)(2, _)$$

$$(1, 3) \bullet {}^{e} (2, _)(3, _) \qquad (2, 3) \bullet {}^{d} (1, _)(3, _) \qquad (3, 3) \bullet {}^{i} (1, _)(2, _)$$

The space complexity is bounded by O(kn).

Construction of Index Sequences

- Each leaf node is exactly associated with one index, which is trivially sorted.
- Let v₁, ..., v_l be the child nodes of v, associated with the index sequences L₁, ..., L_l, respectively. Assume that |L_i| ≤ b (1≤ i ≤ l) and the indexes in each L_i are sorted according to the first element in each index. We will merge all L_i's into a new index sequence and associate it with v. This can be done as follows. First, make a copy of L₁, denoted L. Then, we merge L₂ into L by scanning both of them from left to right. Let (a₁, b₁) (from L) and (a₂, b₂) (from L₂) be the index pair encountered. We will do the following checkings:

- If $a_2 > a_1$, we go to the index next to (a_1, b_1) and compare it with (a_2, b_2) in a next step.
- If $a_1 > a_2$, insert (a_2, b_2) just before (a_1, b_1) . Go to the index next to (a_2, b_2) and compare it with (a_1, b_1) in a next step.
- If $a_1 = a_2$, we will compare b_1 and b_2 . If $b_1 > b_2$, nothing will be done. If $b_2 > b_1$, replace b_1 with b_2 . In both cases, we will go to the indexes next to (a_1, b_1) and (a_2, b_2) , respectively.

We will repeatedly merge L_2 , ..., L_l into L. Obviously, $|L| \le b$ and the indexes in L are sorted. The time spent on this process is $O(d_v k)$, where d_v represents the outdegree of v. So the whole cost is bounded by

$$O(\sum_{v} d_{v}k) = O(ke),$$

where e is the number of edges of G.

Jan. 2023

Graph Stratification

Definition (*DAG stratification*) Let G(V, E) be a DAG. The stratification of *G* is a decomposition of *V* into subsets $V_1, V_2, ..., V_h$ such that $V = V_1 \cup V_2 \cup ... V_h$ and each node in V_i has its children appearing only in $V_{i-1}, ..., V_1$ (i = 2, ..., h), where *h* is the height of *G*, i.e., the length of the longest path in *G*.

For each node v in V_i , its level is said to be i, denoted l(v) = i. In addition, $C_j(v)$ (j < i) represents a set of links with each pointing to one of v's children, which appears in V_j . Therefore, for each v in V_i , there exist $i_1, ..., i_k$ $(i_l < i, l = 1, ..., k)$ such that the set of its children equals $C_{i_1}(v) \cup ... \cup C_{i_k}(v)$. Assume that $V_i = \{v_1, v_2, ..., v_k\}$. We use $C_j^i(j < i)$ to represent $C_j(v_1) \cup ... \cup C_j(v_l)$.

Such a DAG decomposition can be done in O(e) time, by using the following algorithm.

Jan. 2023

 G_1/G_2 - a graph obtained by deleting the edges of G_2 from G_1 . $G_1 \cup G_2$ - a graph obtained by adding the edges of G_1 and G_2 together. (v, u) - an edge from v to u. d(v) - v's outdegree.

Algorithm graph-stratification(G) **begin**

- 1. $V_1 :=$ all the nodes with no outgoing edges;
- 2. **for** i = 1 to h 1 **do**
- 3. { W := all the nodes that have at least one child in V_i ;
- 4. **for** each node v in W **do**
- 5. { let $v_1, ..., v_k$ be v's children appearing in V_i ;

6.
$$C_i(v) := \{ \text{links to } v_1, ..., v_k \};$$

7. **if** d(v) > k **then** remove v from W;

8.
$$G := G/\{(v, v_1), ..., (v, v_k)\};$$

9.
$$d(v) := d(v) - k;$$

10.
$$V_{i+1} := W;$$

11. }

end

- In the above algorithm, we first determine V_1 , which contains all those nodes having no outgoing edges (see line 1).
- In the subsequent computation, we determine V_2 , ..., V_h . In order to determine V_i (i > 1), we will first find all those nodes that have at least one child in V_{i-1} (see line 3), which are stored in a temporary variable W. For each node v in W, we will then check whether it also has some children not appearing in V_{i-1} , which can be done in a constant time as demonstrated below. During the process, the graph Gis reduced step by step, and so does d(v) for each v (see lines 8 and 9).
- First, we notice that after the *j*th iteration of the out-most for-loop, V₁, ..., V_{j+1} are determined. Denote G_j(V, E_j) the reduced graph after the *j*th iteration of the out-most for-loop. Then, any node v in G_j, except those in V₁ ∪ ... ∪ V_{j+1}, does not have children appearing in V₁ ∪ ... ∪ V_j. Denote d_j(v) the outdegree of v in G_j. Thus, in order to check whether v appearing in G_{i-1} has some children not appearing in V_i, we need only to check whether d_{i-1}(v) is strictly larger than k, the number of the child nodes of v appearing in V_i (see line 7).

The nodes of the DAG are divided into four levels: $V_1 = \{d, e, i\}$, $V_2 = \{c, h\}, V_3 = \{b, g\}$, and $V_4 = \{a, f\}$. Associated with each node at each level is a set of links pointing to its children at different levels.

Jan. 2023

Find a minimum set of node disjoint chains for a given DAG *G* such that on each chain if node *v* is above node *u*, then there is a path from *v* to *u* in *G*.

Step 1: Stratify *G* into a series of bipartite graphs.

Step 2: Find a maximum matching for each bipartite graph (which may contain the so-called virtual nodes.) All the matchings make up a set of node-disjoint chains.

Step 3: resolve all the virtual nodes.

Example.

Virtual Nodes

- $V_i' = V_i \cup \{ \text{virtual nodes introduced into } V_i \}.$
- $C_i = C_j^i \cup \{\text{all the new edges from the nodes in } V_i \text{ to the virtual}$ nodes introduced into $V_{i-1}\}.$
- $G(V_i, V_{i-1}', C_i)$ represents the bipartite graph containing V_j and V_{j-1}' .

Definition (*virtual nodes for actual nodes*) Let G(V, E) be a DAG, divided into $V_0, ..., V_{h-1}$ (i.e., $V = V_0 \cup ... \cup V_{h-1}$). Let M_i be a maximum matching of the bipartite graph $G(V_i, V_{i-1}; C_i)$ and v be a free actual node (in V_{i-1} ') relative to M_i (i = 1, ..., h - 1). Add a virtual node v' into V_i . In addition, for each node $u \in V_{i+1}$, a new edge $u \rightarrow v'$ will be created if one of the following two conditions is satisfied:

- 1. $u \rightarrow v \in E$; or
- 2. There exists an edge (v_1, v_2) covered by M_i such that v_1 and v are connected through an alternating path relative to M_i ; and $u \in B_{i+1}(v_1)$ or $u \in B_{i+1}(v_2)$.
- v is called the source of v', denoted s(v').

 $B_j(v)$ represents a set of links with each pointing to one of v's parents, which appears in V_i .

Example.

To obtain the final result, the virtual nodes have to be resolved.

• Virtual node resolution

Definition (*alternating graph*) Let M_i be a maximum matching of $G(V_i, V_{i-1}'; C_i)$. The alternating graph \vec{G}_i with respect to M_i is a directed graph with the following sets of nodes and edges:

 $V(\vec{G}_i) = V_i \cup V_{i-1}', \text{ and}$ $E(\vec{G}_i) = \{u \to v \mid u \in V_{i-1}', v \in V_i, \text{ and } (u, v) \in M_i\} \cup$ $\{v \to u \mid u \in V_{i-1}', v \in V_i, \text{ and } (u, v) \in C_i \setminus M_i\}.$ \vec{G}_2 :

Example.

Combined graph:

Combine \vec{G}_{i+1} and \vec{G}_i by connecting some nodes v' in \vec{G}_{i+1} to some nodes u in \vec{G}_i if the following conditions are satisfied.

- (i) v' is a virtual node appearing in V'_i . (Note that $V(\vec{G}_{i+1}) = V_{i+1} \cup V'_i$.)
- (ii) There exist a node x in V_{i+1} and a node y in V_i such that (x, y')

 $\in M_{i+1}, x \rightarrow y \in C_{i+1}, and (y, u) \in M_i.$

Example.

In order to resolve as many virtual nodes (appearing in *V*i') as possible, we need to find a maximum set of node-disjoint paths (i.e., no two of these paths share any nodes), each starting at virtual node (in \vec{G}_{i+1}) and ending at a free node in \vec{G}_{i+1} , or ending at a free node in \vec{G}_i .

- The problem of finding a maximal set of node-disjoint paths can be solved by transforming it to a maximum flow problem.
- Generally, to find a maximum flow in a network, we need $O(n^3)$ time. However, a network as constructed above is a 0-1 network. In addition, for each node v, we have either $d_{in}(v) \leq 1$ or $d_{out}(v) \leq 1$, where $d_{in}(v)$ and $d_{out}(v)$ represent the indegree and outdegree of v in $\vec{G}_{i+1} \oplus \vec{G}_i$, respectively. It is because each path in $\vec{G}_{i+1} \oplus \vec{G}_i$ is an alternating path relative to M_{i+1} or relative to M_i . So each node except sources and sinks is an end node of an edge covered by M_{i+1} or by M_i . As shown in ([14]), it needs only $O(n^{2.5})$ time to find a maximum flow in such kind of networks.

 $M_1 \cup M_2$:

Virtual nodes will be removed.

Definition (*virtual nodes for virtual nodes*) Let M_i be a maximum matching of the bipartite graph $G(V_i, V_{i-1}; C_i)$ and v'be a free virtual node (in V_{i-1} ') relative to M_i (i = 1, ..., h - 1). Add a virtual node v" into V_i . Set s(v") to be w = s(v'). Let l(w) = j. For each node $u \in V_{i+1}$, a new $u \to v$ ' will be created if there exists an edge (v_1, v_2) covered by M_{j+1} such that v_1 and w are connected through an alternating path relative to M_{i+1} ; and $u \in B_{i+1}(v_1)$ or $u \in B_{i+1}(v_2)$.

Example.

Jan. 2023

Node-disjoint Paths in Combined Graphs

Now we discuss an algorithm for finding a maximal set of node-disjoint paths in a combined graph $\vec{G}_{i+1} \oplus \vec{G}_i$. Its time complexity is bounded by $O(e \cdot n^{1/2})$, where $n = V(\vec{G}_{i+1} \oplus \vec{G}_i)$ and $e = E(\vec{G}_{i+1} \oplus \vec{G}_i)$. It is in fact a modified version of Dinic's algorithm [6], adapted to combined graphs, in which each path from a virtual node to a free node relative to M_{i+1} or relative to M_i is an alternating path, and for each edge $(u, v) \in M_{i+1} \cup M_i$, we have $d_{out}(u) = d_{in}(v) = 1$. Therefore, for any three nodes v, v', and v'' on a path in $\vec{G}_{i+1} \oplus \vec{G}_i$, we have $d_{out}(v) = d_{in}(v') = 1$, or $d_{out}(v') = d_{in}(v'') = 1$. We call this property the *alternating property*, which enables us to do the task efficiently by using a dynamical arc-marking mechanism. An arc $u \to v$ with $d_{out}(u) = d_{in}(v) = 1$ is called a *bridge*.

- Our algorithm works in multiple phases.
- In each phase, the arcs in $\vec{G}_{i+1} \oplus \vec{G}_i$ will be marked or unmarked.
- We also call a virtual node in $\vec{G}_{i+1} \oplus \vec{G}_i$ an origin and a free node a terminus.
- An origin is said to be saturated if one of its outgoing arcs is marked; and a terminus is saturated if one of its incoming arcs is marked.

In the following discussion, we denote $\vec{G}_{i+1} \oplus \vec{G}_i$ by *A*. At the very beginning of the first phase, all the arcs in *A* are unmarked. In the *k*th phase ($k \ge 1$), a subgraph $A^{(k) \text{ of }}A$ will be explored, which is defined as follows.

- Let V_0 be the set of all the unsaturated origins (appearing in).
- Define V_j (j > 0) as below:

$$\begin{split} E_{j\cdot 1} &= \{ \begin{array}{l} u \rightarrow v \in E(A) \mid u \in V_{j\cdot 1}, v \notin V_0 \cup V_1 \cup \ldots \cup V_{j\cdot 1}, \\ u \rightarrow v \text{ is unmarked} \} \cup \\ \{ \begin{array}{l} v \rightarrow u \in E(A) \mid u \in V_{j\cdot 1}, v \notin V_0 \cup V_1 \cup \ldots \cup V_{j\cdot 1}, \\ v \rightarrow u \text{ is marked} \}, \end{array} \\ V_j &= \{ \begin{array}{l} v \in V(A) \mid \text{for some } u, u \rightarrow v \text{ is unmarked and} \\ u \rightarrow v \in E_{j\cdot 1} \} \cup \\ \{ \begin{array}{l} v \in V(A) \mid \text{for some } u, v \rightarrow u \text{ is marked and} \\ v \rightarrow u \in E_{j\cdot 1} \}. \end{split} \end{split}$$

Define $j^* = \min\{j \mid V_j \cap \{\text{unsaturated terminus}\} \neq \phi\}$. (Note that the terminus appearing in \vec{G}_{i+1} are the free nodes relative to M_{i+1} ; and those appearing in \vec{G}_i are the free nodes relative to M_i .)

 $A^{(k)}$ is formed with $V(A^{(k)})$ and $E(A^{(k)})$ defined below.

If
$$j^* = 1$$
, then
 $V(A^{(k)}) = V_0 \cup (V_{j^*} \cap \{\text{unsaturated terminus}\}),$
 $E(A^{(k)}) = \{u \rightarrow v \mid u \in V_{j^{*-1}}, \text{ and } v \in \{\text{unsaturated terminus}\}\}.$
If $j^* > 1$, then
 $V(A^{(k)}) = V_0 \cup V_1 \cup \ldots \cup V_{j^{*-1}} \cup (V_{j^*} \cap \{\text{unsaturated terminus}\}),$
 $E(A^{(k)}) = E_0 \cup E_1 \cup \ldots \cup E_{j^{*-2}} \cup \{u \rightarrow v \mid u \in E_{j^{*-1}}, \text{ and} v \in \{\text{unsaturated terminus}\}\}.$

The sets V_i are called *levels*.

In , a node sequence $v_1, ..., v_j, v_{j+1}, ..., v_l$ is called a complete sequence if the following conditions are satisfied.

- (1) v_1 is an origin and v_l is a terminus.
- (2) For each two consecutive nodes v_j , v_{j+1} (j = 1, ..., l 1), we have an unmaked arc $v_i \rightarrow v_{j+1}$ in $A^{(k)}$, or a marked arc $v_{j+1} \rightarrow v_j$ in $A^{(k)}$.

Our algorithm will explore to find a set of node-disjoint complete sequences (i.e., no two of them share any nodes.) Then, we mark and unmark the arcs along each complete sequence as follows. (i) If (v_j, v_{j+1}) corresponds to an arc in $A^{(k)}$, mark that arc. (ii) If (v_{j+1}, v_j) corresponds to an arc in $A^{(k)}$, unmark that arc. Obviously, if for an $A^{(k)}$ there exists *j* such that $V_j = \Phi$ and $V_i \cap$ {unsaturated terminus} = Φ for i < j, we cannot find a complete sequence in it. In this case, we set $A^{(k)}$ to Φ and then the *k*th phase is the last phase.

Jan. 2023

35

Algorithm subgraph-exploring() begin

- let v be the first element in V0; 1.
- 2. push(v, H); mark v 'accessed';
- while *H* is not empty do { 3.
- 4. $v := top(\mathbf{H})$; (*the top element of **H** is assigned to v.*)
- while $neighbor(v) \neq F$ do { 5.
- let *u* be the first element in *neighbor*(*v*); 6.
- 7. if *u* is accessed then remove *u* from *neighbor*(*v*)
- else {push(u, H); mark u 'accessed'; v := u;} 8.
- 9.
- 10. if v is neither in V_i^* nor in V_0 then pop(H)
- else {if v is in V_i^* then output all the elements in H; 11.
 - (*all the elements in *H* make up a complete sequence.*)
- 12. remove all elements in *H*; 13.
 - let v be the next element in V_0 ;
- 14. *push*(*v*, *H*); mark *v*;
- 15. }
- end
 - Jan. 2023

Algorithm node-disjoint-paths(A) begin

- 1. k := 1;
- 2. construct $A^{(1)}$;
- 3. while $A^{(k)} \neq \Phi \operatorname{do} \{$
- 4. call *subgraph-exploring*($A^{(k)}$);
- 5. let $P_1, \dots P_l$ be all the found complete sequences;
- 6. **for** j = 1 to l **do**

ł

7. { let
$$P_j = v_1, v_2, \dots, v_m$$

8. mark
$$v_i \rightarrow v_{i+1}$$
 or unmark $v_{i+1} \rightarrow v_i$ $(i = 1, ..., m - 1)$
according to (i) and (ii) above;

9.

10.
$$k := k + 1$$
; construct $A^{(k)}$;

11. }

end