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Outline: Transitive Closure Compression 

• Motivation 

• DAG decomposition into node-disjoint chains 

 - Graph stratification 

 - Virtual nodes 

 - Maximum set of node-disjoint paths 
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• A simple method 

 - store a transitive closure as a matrix 

Motivation 
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Space overhead: O(n2) 
Query time: O(1) 
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DAG Decomposition into Node-Disjoint 

Chains 

A DAG is a directed acyclic graph (a graph containing no cycles).  

On a chain, if node v appears above node u, there is a path from v 

to u in G.  
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Decomposition of a DAG into a set of node-disjoint 

chains 

a f 

b 

c 

d e 

g 

h 

i 

a f a 

c 

e 

f 

b 

d 

g 

h 

i 



Transitive Closure Compression 

Jan. 2023 Yangjun Chen         ACS-7102 5 

Based on such a chain decomposition, we can assign each node an 

index as follows: 

(1) Number each chain and number each node on a chain. 

(2) The jth node on the ith chain will be assigned a pair (i, j) as its 

 index. 
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Each node v on the ith chain will also be associated with an index 

sequence of length k : (1, j1) … (i – 1, ji-1) (i + 1, ji+1) … (k, jk) 

such that any node with index (x, y) is a descendant of v if x = i and 

y < j or x  i but y  jx, where k is the number of the disjoint chains. 
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The space complexity is bounded by O(kn). 
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Construction of Index Sequences 

• Each leaf node is exactly associated with one index, which is 

 trivially sorted. 

• Let v1, ..., vl be the child nodes of v, associated with the index 

 sequences L1, ..., Ll, respectively. Assume that |Li|  b (1 i  l) 

 and the indexes in each Li are sorted according to the first element 

 in each index. We will merge all Li’s into a new index sequence 

 and associate it with v. This can be done as follows. First, make a 

 copy of L1, denoted L. Then, we merge L2 into L by scanning both 

 of them from left to right. Let (a1, b1) (from L) and (a2, b2) (from 

 L2) be the index pair encountered. We will do the following 

 checkings: 
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 - If a2 > a1, we go to the index next to (a1, b1) and compare it 

  with (a2, b2) in a next step. 

 - If a1 > a2, insert (a2, b2) just before (a1, b1). Go to the index 

  next to (a2, b2) and compare it with (a1, b1) in a next step. 

 - If a1 = a2, we will compare b1 and b2. If b1 > b2, nothing will 

  be done. If b2 > b1, replace b1 with b2. In both cases, we will 

  go to the indexes next to (a1, b1) and (a2, b2), respectively.  

We will repeatedly merge L2, ..., Ll into L. Obviously, |L|  b and 

the indexes in L are sorted. The time spent on this process is O(dvk), 

where dv represents the outdegree of v. So the whole cost is 

bounded by  

O(    dvk) = O(ke), 

where e is the number of edges of G. 

 
v 
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Graph Stratification 

Definition (DAG stratification) Let G(V, E) be a DAG. The stratifi- 

cation of G is a decomposition of V into subsets V1, V2,..., Vh such 

that V = V1  V2  ... Vh and each node in Vi has its children 

appearing only in Vi-1, ..., V1 (i = 2, ..., h), where h is the height of 

G, i.e., the length of the longest path in G.  

For each node v in Vi, its level is said to be i, denoted l(v) = i. In 

addition, Cj(v) (j < i) represents a set of links with each pointing to 

one of v’s children, which appears in Vj. Therefore, for each v in Vi, 

there exist i1, ..., ik (il < i, l = 1, ..., k) such that the set of its children 

equals     (v)  ...       (v). Assume that Vi = {v1, v2, ..., vk}. We use  

    (j < i) to represent Cj(v1)  ...  Cj(vl). 

C i1 C ik 

Cj 
i 

Such a DAG decomposition can be done in O(e) time, by using the following 

algorithm. 
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G1/G2 - a graph obtained by deleting the edges of G2 from G1. 

G1  G2 - a graph obtained by adding the edges of G1 and G2 together. 

(v, u) - an edge from v to u. d(v) - v’s outdegree. 

Algorithm graph-stratification(G) 

begin 

1. V1 := all the nodes with no outgoing edges; 

2. for i = 1 to h - 1 do 

3.  { W := all the nodes that have at least one child in Vi; 

4.   for each node v in W do 

5.    { let v1, ..., vk be v’s children appearing in Vi; 

6.     Ci(v) := {links to v1, ..., vk}; 

7.     if d(v) > k then remove v from W; 

8.     G := G/{(v, v1), ..., (v, vk)}; 

9.     d(v) := d(v) - k;} 

10.   Vi+1 := W; 

11.  } 

end 
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• In the above algorithm, we first determine V1, which contains all those nodes having 

 no outgoing edges (see line 1). 

• In the subsequent computation, we determine V2, ..., Vh. In order to determine Vi 

 (i > 1), we will first find all those nodes that have at least one child in Vi-1 

 (see line 3), which are stored in a temporary variable W. For each node v in W, we 

 will then check whether it also has some children not appearing in Vi-1, which can 

 be done in a constant time as demonstrated below. During the process, the graph G 

 is reduced step by step, and so does d(v) for each v (see lines 8 and 9). 

• First, we notice that after the jth iteration of the out-most for-loop, V1 , ..., Vj+1 are 

 determined. Denote Gj(V, Ej) the reduced graph after the jth iteration of the 

 out-most for-loop. Then, any node v in Gj, except those in V1  ...  Vj+1, does not 

 have children appearing in V1  ...  Vj. Denote dj(v) the outdegree of v in Gj. 

 Thus, in order to check whether v appearing in Gi-1 has some children not appearing 

 in Vi, we need only to check whether di-1(v) is strictly larger than k, the number of 

 the child nodes of v appearing in Vi (see line 7). 
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V4: a C3(a) = {c} f C3(f) = {b} 

V3: b C2(b) = {c} 

C1(b) = {i} 

g C2(g) = {h} 

C1(g) = {d} 

V2: c C1(c) = {d, e} h C1(h) = {e, i} 

V1: d i e 

The nodes of the DAG are divided into four levels: V1 = {d, e, i}, 

V2 = {c, h}, V3 = {b, g}, and V4 = {a, f}. Associated with each 

node at each level is a set of links pointing to its children at different 

levels. 
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Find a minimum set of node disjoint chains for a 
given DAG G such that on each chain if node v is 
above node u, then there is a path from v to u in 
G. 

Step 1: Stratify G into a series of bipartite graphs. 
Step 2: Find a maximum matching for each 
 bipartite graph (which may contain the 
 so-called virtual nodes.) All the matchings 
 make up a set of node-disjoint chains. 
Step 3: resolve all the virtual nodes. 
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Example. 
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Example. 
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Virtual Nodes 

- Vi’ = Vi  {virtual nodes introduced into Vi}. 

- Ci =     {all the new edges from the nodes in Vi to the virtual 

 nodes introduced into Vi-1}. 

- G(Vi, Vi-1’, Ci) represents the bipartite graph containing Vj and 

 Vi-1’.   

i

jC
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 Definition (virtual nodes for actual nodes) Let G(V, E) be a DAG, divided 

into V0, ..., Vh-1 (i.e., V = V0  ...  Vh-1). Let Mi be a maximum matching of 

the bipartite graph G(Vi, Vi-1’; Ci) and v be a free actual node (in Vi-1’) relative 

to Mi (i = 1, ..., h - 1). Add a virtual node v’ into Vi. In addition, for each node u 

 Vi+1, a new edge u  v’ will be created if one of the following two 

conditions is satisfied: 

  

1. u  v   E; or 
2. There exists an edge (v1, v2) covered by Mi such that v1 and 
 v are connected through an alternating path relative to Mi; 
 and u  Bi+1(v1) or u  Bi+1(v2). 
   
v is called the source of v’, denoted s(v’). 

Bj(v) represents a set of links with each pointing to one of v’s parents, 

which appears in Vj.   
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Example. 
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Example. 
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To obtain the final result, the virtual nodes have to be 
resolved. 
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• Virtual node resolution 

 Definition (alternating graph) Let Mi be a maximum matching of 

G(Vi, Vi-1’; Ci). The alternating graph      with respect to Mi is a directed 

graph with the following sets of nodes and edges: 

  V(  ) = Vi  Vi-1’, and 

  E(  ) = {u  v | u  Vi-1’, v  Vi, and (u, v)  Mi}  

    {v  u | u  Vi-1’, v  Vi, and (u, v)  Ci\Mi}. 
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iG
i

G

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Example. 
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Combined graph: 

Combine      and    by connecting some nodes v’ in     to some nodes 

u in    if the following conditions are satisfied. 

(i) v’ is a virtual node appearing in Vi’. 

  (Note that V(    ) = Vi+1  Vi’.) 

(ii) There exist a node x in Vi+1 and a node y in Vi such that (x, v’) 

   Mi+1, x  y  Ci+1, and (y, u)  Mi. 
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Example. 

1G


: 2G


: 

f e c b 

j h a 

i 

i’ d e 

a’ g 

 

i’ d e 

a’ 
g 

f e c b 

j h a 

i 



Transitive Closure Compression 

Jan. 2023 Yangjun Chen         ACS-7102 24 

In order to resolve as many virtual nodes (appearing in Vi’)  

as possible, we need to find a maximum set of node-disjoint 

paths (i.e., no two of these paths share any nodes), each 

starting at virtual node (in    ) and ending at a free node in 

    , or ending at a free node in   .  
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- Generally, to find a maximum flow in a network, we need 

 O(n3) time. However, a network as constructed above is 

 a 0-1 network. In addition, for each node v, we have either 

 din(v)  1 or dout(v)  1, where din(v) and dout(v) represent the 

 indegree and outdegree of v in        , respectively. It is 

 because each path in         is an alternating path relative to 

 Mi+1 or relative to Mi. So each node except sources and sinks 

 is an end node of an edge covered by Mi+1 or by Mi. As shown 

 in ([14]), it needs only O(n2.5) time to find a maximum flow 

 in such kind of networks.  

1iG
 iG


1iG



iG


- The problem of finding a maximal set of node-disjoint 
 paths can be solved by transforming it to a maximum 
 flow problem. 
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Virtual nodes will be removed. 
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 Definition (virtual nodes for virtual nodes) Let Mi be a maximum 

matching of the bipartite graph G(Vi, Vi-1’; Ci) and v’ be a free virtual node (in 

Vi-1’) relative to Mi (i = 1, ..., h - 1). Add a virtual node v’’ into Vi. Set s(v’’) to 

be w = s(v’). Let l(w) = j. For each node u  Vi+1, a new u  v’ will be created 

if there exists an edge (v1, v2) covered by Mj+1 such that v1 and w are connected 

through an alternating path relative to Mj+1; and u  Bi+1(v1) or u  Bi+1(v2).  

Example. 

c f i k 

b d h 

e g 

p q 

c f i k V0: 

b d h V1: 

e g V2: 

p q V3: 



Transitive Closure Compression 

Jan. 2023 Yangjun Chen         ACS-7102 28 

Example. 
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Node-disjoint Paths in Combined Graphs 

Now we discuss an algorithm for finding a maximal set of node-disjoint paths in a  

combined graph           . Its time complexity is bounded by O(en1/2), where n = 

V(            ) and e = E(           ). It is in fact a modified version of Dinic’s 

algorithm [6], adapted to combined graphs, in which each path from a virtual node 

to a free node relative to Mi+1 or relative to Mi is an alternating path, and for each 

edge (u, v)  Mi+1  Mi, we have dout(u) = din(v) = 1. Therefore, for any three nodes 

v, v’, and v’’ on a path in            , we have dout(v) = din(v’) = 1, or dout(v’) = 

din(v’’) = 1. We call this property the alternating property, which enables us to do 

the task efficiently by using a dynamical arc-marking mechanism. An arc u  v 

with dout(u) = din(v) = 1 is called a bridge. 

iG
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1iG


1iG
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iG
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

iG

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• Our algorithm works in multiple phases. 

• In each phase, the arcs in            will be marked or unmarked. 

• We also call a virtual node in            an origin and a free node a 

 terminus. 

• An origin is said to be saturated if one of its outgoing arcs is 

 marked; and a terminus is saturated if one of its incoming arcs is 

 marked. 

1iG


iG


iG


1iG


In the following discussion, we denote          by A. 

At the very beginning of the first phase, all the arcs in A are 

unmarked. 

iG


1iG

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In the kth phase (k  1), a subgraph  A(k) of A will be explored, which is 

defined as follows. 

• Let V0 be the set of all the unsaturated origins (appearing in ). 

• Define Vj (j > 0) as below: 

Ej-1 = { u  v  E(A) | u  Vj-1, v  V0  V1  ...  Vj-1, 

  u  v is unmarked}  

 { v  u  E(A) | u  Vj-1, v  V0  V1  ...  Vj-1, 

  v  u is marked}, 

Vj =  { v  V(A) | for some u, u  v is unmarked and 

  u  v  Ej-1}  

 { v  V(A) | for some u, v  u is marked and 

  v  u  Ej-1}. 
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Define j* = min{j | Vj  {unsaturated terminus}  }. (Note that the 

terminus appearing in      are the free nodes relative to Mi+1; and those 

appearing in      are the free nodes relative to Mi.) 

If j* = 1, then  

 V(A(k)) = V0  (Vj*  {unsaturated terminus}), 

 E(A(k)) = {u  v | u  Vj*-1, and v  {unsaturated terminus}}. 

If j* > 1, then 

 V(A(k)) = V0  V1  ...  Vj*-1  (Vj*  {unsaturated terminus}), 

 E(A(k)) = E0  E1  ...  Ej*-2  {u  v | u  Ej*-1, and 

   v  {unsaturated terminus}}. 

 

The sets Vj are called levels.   

A(k) is formed with V(A(k)) and E(A(k)) defined below. 

1iG


iG

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In , a node sequence v1, ..., vj, vj+1, ..., vl is called a complete 

sequence if the following conditions are satisfied. 

(1) v1 is an origin and vl is a terminus. 

(2) For each two consecutive nodes vj, vj+1 (j = 1, ..., l - 1), we have 

 an unmaked arc vj  vj+1 in A(k), or a marked arc vj+1  vj in A(k). 

 
Our algorithm will explore  to find a set of node-disjoint complete 

sequences (i.e., no two of them share any nodes.) Then, we mark and 

unmark the arcs along each complete sequence as follows. 

(i) If (vj, vj+1) corresponds to an arc in A(k), mark that arc. 

(ii) If (vj+1, vj) corresponds to an arc in A(k) , unmark that arc. 

 Obviously, if for an A(k) there exists j such that Vj  = Φ and Vi  

{unsaturated terminus} = Φ for i < j, we cannot find a complete sequence in it. 

In this case, we set A(k) to Φ and then the kth phase is the last phase.   
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Algorithm subgraph-exploring() 

begin 

1. let v be the first element in V0; 

2. push(v, H); mark v ‘accessed’; 

3. while H is not empty do { 

4.  v := top(H); (*the top element of H is assigned to v.*) 

5.  while neighbor(v)  F do { 

6.   let u be the first element in neighbor(v); 

7.   if u is accessed then remove u from neighbor(v) 

8.   else {push(u, H); mark u ‘accessed’; v := u;} 

9. } 

10.  if v is neither in Vj* nor in V0 then pop(H) 

11.  else {if v is in Vj* then output all the elements in H; 

 (*all the elements in H make up a complete sequence.*) 

12.    remove all elements in H; 

13.    let v be the next element in V0; 

14.    push(v, H); mark v; 

15. } 

end 
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Algorithm node-disjoint-paths(A) 

begin 

1. k := 1; 

2. construct A(1) ; 

3. while A(k)    do { 

4.  call subgraph-exploring(A(k)); 

5.  let P1, ... Pl be all the found complete sequences; 

6.  for j = 1 to l do 

7.  { let Pj = v1, v2,  ... , vm; 

8.   mark vi  vi+1 or unmark vi+1  vi (i = 1, ..., m - 1) 

   according to (i) and (ii) above; 

9.  } 

10.  k := k + 1; construct A(k); 

11. }  

end 


