
Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 1

Outline: Transitive Closure Compression

• Motivation

• DAG decomposition into node-disjoint chains

 - Graph stratification

 - Virtual nodes

 - Maximum set of node-disjoint paths

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 2

• A simple method

 - store a transitive closure as a matrix

Motivation

c b

a

d e

G:

c b

a

d e

G*:

M =

a
b
c
d
e

a b c d e

0
0
0
0
0

1
0
0
0
0

1
0
1
0
0

0
0
1
0
0

1
0
0
0
0

M* =

a
b
c
d
e

a b c d e

0
0
0
0
0

1
0
0
0
0

1
0
1
0
0

1
0
1
0
0

1
0
0
0
0

Space overhead: O(n2)
Query time: O(1)

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 3

DAG Decomposition into Node-Disjoint

Chains

A DAG is a directed acyclic graph (a graph containing no cycles).

On a chain, if node v appears above node u, there is a path from v

to u in G.

g

h

i

b

c

d

a f

e

A DAG is a directed acyclic graph (a graph containing no cycles).

On a chain, if node v appears above node u, there is a path from v

to u in G.

a f

b

c

d e

g

h

i

a f

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 4

Decomposition of a DAG into a set of node-disjoint

chains

a f

b

c

d e

g

h

i

a f a

c

e

f

b

d

g

h

i

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 5

Based on such a chain decomposition, we can assign each node an

index as follows:

(1) Number each chain and number each node on a chain.

(2) The jth node on the ith chain will be assigned a pair (i, j) as its

 index.

a

c

e

f

b

d

g

h

i

(2, 1)

(2, 2)

(2, 3)

(1, 1)

(1, 2)

(1, 3)

(3, 1)

(3, 2)

(3, 3)

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 6

Each node v on the ith chain will also be associated with an index

sequence of length k : (1, j1) … (i – 1, ji-1) (i + 1, ji+1) … (k, jk)

such that any node with index (x, y) is a descendant of v if x = i and

y < j or x  i but y  jx, where k is the number of the disjoint chains.

a

c

e

f

b

d

g

h

i

(2, 1)

(2, 2)

(2, 3)

(1, 1)

(1, 2)

(1, 3)

(3, 1)

(3, 2)

(3, 3)

(2, 2)(3, 3)

(2, 3)(3, _)

(2, _)(3, _)

(1, 2)(3, 3)

(1, 3)(3, 3)

(1, _)(3, _)

(1, _)(2, 3)

(1, 3)(2, _)

(1, _)(2, _)

The space complexity is bounded by O(kn).

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 7

Construction of Index Sequences

• Each leaf node is exactly associated with one index, which is

 trivially sorted.

• Let v1, ..., vl be the child nodes of v, associated with the index

 sequences L1, ..., Ll, respectively. Assume that |Li|  b (1 i  l)

 and the indexes in each Li are sorted according to the first element

 in each index. We will merge all Li’s into a new index sequence

 and associate it with v. This can be done as follows. First, make a

 copy of L1, denoted L. Then, we merge L2 into L by scanning both

 of them from left to right. Let (a1, b1) (from L) and (a2, b2) (from

 L2) be the index pair encountered. We will do the following

 checkings:

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 8

 - If a2 > a1, we go to the index next to (a1, b1) and compare it

 with (a2, b2) in a next step.

 - If a1 > a2, insert (a2, b2) just before (a1, b1). Go to the index

 next to (a2, b2) and compare it with (a1, b1) in a next step.

 - If a1 = a2, we will compare b1 and b2. If b1 > b2, nothing will

 be done. If b2 > b1, replace b1 with b2. In both cases, we will

 go to the indexes next to (a1, b1) and (a2, b2), respectively.

We will repeatedly merge L2, ..., Ll into L. Obviously, |L|  b and

the indexes in L are sorted. The time spent on this process is O(dvk),

where dv represents the outdegree of v. So the whole cost is

bounded by

O(dvk) = O(ke),

where e is the number of edges of G.


v

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 9

Graph Stratification

Definition (DAG stratification) Let G(V, E) be a DAG. The stratifi-

cation of G is a decomposition of V into subsets V1, V2,..., Vh such

that V = V1  V2  ... Vh and each node in Vi has its children

appearing only in Vi-1, ..., V1 (i = 2, ..., h), where h is the height of

G, i.e., the length of the longest path in G.

For each node v in Vi, its level is said to be i, denoted l(v) = i. In

addition, Cj(v) (j < i) represents a set of links with each pointing to

one of v’s children, which appears in Vj. Therefore, for each v in Vi,

there exist i1, ..., ik (il < i, l = 1, ..., k) such that the set of its children

equals (v)  ...  (v). Assume that Vi = {v1, v2, ..., vk}. We use

 (j < i) to represent Cj(v1)  ...  Cj(vl).

C i1 C ik

Cj
i

Such a DAG decomposition can be done in O(e) time, by using the following

algorithm.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 10

G1/G2 - a graph obtained by deleting the edges of G2 from G1.

G1  G2 - a graph obtained by adding the edges of G1 and G2 together.

(v, u) - an edge from v to u. d(v) - v’s outdegree.

Algorithm graph-stratification(G)

begin

1. V1 := all the nodes with no outgoing edges;

2. for i = 1 to h - 1 do

3. { W := all the nodes that have at least one child in Vi;

4. for each node v in W do

5. { let v1, ..., vk be v’s children appearing in Vi;

6. Ci(v) := {links to v1, ..., vk};

7. if d(v) > k then remove v from W;

8. G := G/{(v, v1), ..., (v, vk)};

9. d(v) := d(v) - k;}

10. Vi+1 := W;

11. }

end

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 11

• In the above algorithm, we first determine V1, which contains all those nodes having

 no outgoing edges (see line 1).

• In the subsequent computation, we determine V2, ..., Vh. In order to determine Vi

 (i > 1), we will first find all those nodes that have at least one child in Vi-1

 (see line 3), which are stored in a temporary variable W. For each node v in W, we

 will then check whether it also has some children not appearing in Vi-1, which can

 be done in a constant time as demonstrated below. During the process, the graph G

 is reduced step by step, and so does d(v) for each v (see lines 8 and 9).

• First, we notice that after the jth iteration of the out-most for-loop, V1 , ..., Vj+1 are

 determined. Denote Gj(V, Ej) the reduced graph after the jth iteration of the

 out-most for-loop. Then, any node v in Gj, except those in V1  ...  Vj+1, does not

 have children appearing in V1  ...  Vj. Denote dj(v) the outdegree of v in Gj.

 Thus, in order to check whether v appearing in Gi-1 has some children not appearing

 in Vi, we need only to check whether di-1(v) is strictly larger than k, the number of

 the child nodes of v appearing in Vi (see line 7).

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 12

a f

b

c

d e

g

h

i

a f
V4: a C3(a) = {c} f C3(f) = {b}

V3: b C2(b) = {c}

C1(b) = {i}

g C2(g) = {h}

C1(g) = {d}

V2: c C1(c) = {d, e} h C1(h) = {e, i}

V1: d i e

The nodes of the DAG are divided into four levels: V1 = {d, e, i},

V2 = {c, h}, V3 = {b, g}, and V4 = {a, f}. Associated with each

node at each level is a set of links pointing to its children at different

levels.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 13

Find a minimum set of node disjoint chains for a
given DAG G such that on each chain if node v is
above node u, then there is a path from v to u in
G.

Step 1: Stratify G into a series of bipartite graphs.
Step 2: Find a maximum matching for each
 bipartite graph (which may contain the
 so-called virtual nodes.) All the matchings
 make up a set of node-disjoint chains.
Step 3: resolve all the virtual nodes.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 14

Example.

c f i j a

b e h

d g

c f i j a V0:

b e h

d g

V1:

V2:

V0:

V1: b e h

c f i j a

b e h

c f i j a

M1:

V1:

V2:

b e h

d g

b e h

d g M2:

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 15

Example.

b e h

c f i j a

M1:

b e h

d g M2:

b e h

c f i j a

d g

a set of 6 chains

b e h

c f i j a

d g

b e h

c f i j a

d g

a set of 5 chains

M1  M2:

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 16

Virtual Nodes

- Vi’ = Vi  {virtual nodes introduced into Vi}.

- Ci =  {all the new edges from the nodes in Vi to the virtual

 nodes introduced into Vi-1}.

- G(Vi, Vi-1’, Ci) represents the bipartite graph containing Vj and

 Vi-1’.

i

jC

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 17

 Definition (virtual nodes for actual nodes) Let G(V, E) be a DAG, divided

into V0, ..., Vh-1 (i.e., V = V0  ...  Vh-1). Let Mi be a maximum matching of

the bipartite graph G(Vi, Vi-1’; Ci) and v be a free actual node (in Vi-1’) relative

to Mi (i = 1, ..., h - 1). Add a virtual node v’ into Vi. In addition, for each node u

 Vi+1, a new edge u  v’ will be created if one of the following two

conditions is satisfied:

1. u  v  E; or
2. There exists an edge (v1, v2) covered by Mi such that v1 and
 v are connected through an alternating path relative to Mi;
 and u  Bi+1(v1) or u  Bi+1(v2).

v is called the source of v’, denoted s(v’).

Bj(v) represents a set of links with each pointing to one of v’s parents,

which appears in Vj.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 18

Example.

c f i j a

b e h

d g

c f i j a V0:

b e h

d g

V1:

V2:

V0:

V1: b e h

c f i j a

b e h

c f i j a

M1:

V1’:

V2:

b e i’

d g

h a’ b e i’

d g

h a’

M2:

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 19

Example.

b e h

c f i j a

M1:

b e i’

d g

h a’

M2:
b e i’

c f i j a

d g

a set of 5 chains

M1  M2:

h a’

To obtain the final result, the virtual nodes have to be
resolved.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 20

• Virtual node resolution

 Definition (alternating graph) Let Mi be a maximum matching of

G(Vi, Vi-1’; Ci). The alternating graph with respect to Mi is a directed

graph with the following sets of nodes and edges:

 V() = Vi  Vi-1’, and

 E() = {u  v | u  Vi-1’, v  Vi, and (u, v)  Mi} 

 {v  u | u  Vi-1’, v  Vi, and (u, v)  Ci\Mi}.

iG


iG
i

G


Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 21

Example.

V0:

V1: b e h

c f i j V1’:

V2:

b e i’

d g

h a’

1G


: 2G


:

f e c b

j h a

i

i’ d e

a’ g

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 22

Combined graph:

Combine and by connecting some nodes v’ in to some nodes

u in if the following conditions are satisfied.

(i) v’ is a virtual node appearing in Vi’.

 (Note that V() = Vi+1  Vi’.)

(ii) There exist a node x in Vi+1 and a node y in Vi such that (x, v’)

  Mi+1, x  y  Ci+1, and (y, u)  Mi.

iG


1iG


iG


1iG


1iG


b e i’

d g

h a’

2G


:

b e h

c f i j
1G


:

X
y X

u

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 23

Example.

1G


: 2G


:

f e c b

j h a

i

i’ d e

a’ g



i’ d e

a’
g

f e c b

j h a

i

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 24

In order to resolve as many virtual nodes (appearing in Vi’)

as possible, we need to find a maximum set of node-disjoint

paths (i.e., no two of these paths share any nodes), each

starting at virtual node (in) and ending at a free node in

 , or ending at a free node in .

1iG


1iG


i’ d e

a’
g

f e c b

j h a

i

iG


i’ e

a’
g

f e c b

j h a

i’ e

a’
g

f e c b

i

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 25

- Generally, to find a maximum flow in a network, we need

 O(n3) time. However, a network as constructed above is

 a 0-1 network. In addition, for each node v, we have either

 din(v)  1 or dout(v)  1, where din(v) and dout(v) represent the

 indegree and outdegree of v in  , respectively. It is

 because each path in  is an alternating path relative to

 Mi+1 or relative to Mi. So each node except sources and sinks

 is an end node of an edge covered by Mi+1 or by Mi. As shown

 in ([14]), it needs only O(n2.5) time to find a maximum flow

 in such kind of networks.

1iG
 iG


1iG



iG


- The problem of finding a maximal set of node-disjoint
 paths can be solved by transforming it to a maximum
 flow problem.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 26

iG


i’ e

a’
g

f e c b

j h a

b e i’

c f i j a

d g

M1  M2:

h a’ b e i’

c f i j a

d g

h a’

Virtual nodes will be removed.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 27

 Definition (virtual nodes for virtual nodes) Let Mi be a maximum

matching of the bipartite graph G(Vi, Vi-1’; Ci) and v’ be a free virtual node (in

Vi-1’) relative to Mi (i = 1, ..., h - 1). Add a virtual node v’’ into Vi. Set s(v’’) to

be w = s(v’). Let l(w) = j. For each node u  Vi+1, a new u  v’ will be created

if there exists an edge (v1, v2) covered by Mj+1 such that v1 and w are connected

through an alternating path relative to Mj+1; and u  Bi+1(v1) or u  Bi+1(v2).

Example.

c f i k

b d h

e g

p q

c f i k V0:

b d h V1:

e g V2:

p q V3:

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 28

Example.

c f i k

b d h M1:

c f i k V0:

b d h V1:

f’ d h V1’:

e g V2:

b f’ d h

e g M2 :

b

f’’ d h V2’:

p q V3:

b’ f’’ d h

p q M3:

b’

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 29

b f’ d h

b’ f’’ e g

c f i k

p q

b f’ d h

p e g

c f i k

q

b d h

p e g

c f i k

q

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 30

Node-disjoint Paths in Combined Graphs

Now we discuss an algorithm for finding a maximal set of node-disjoint paths in a

combined graph  . Its time complexity is bounded by O(en1/2), where n =

V() and e = E(). It is in fact a modified version of Dinic’s

algorithm [6], adapted to combined graphs, in which each path from a virtual node

to a free node relative to Mi+1 or relative to Mi is an alternating path, and for each

edge (u, v)  Mi+1  Mi, we have dout(u) = din(v) = 1. Therefore, for any three nodes

v, v’, and v’’ on a path in  , we have dout(v) = din(v’) = 1, or dout(v’) =

din(v’’) = 1. We call this property the alternating property, which enables us to do

the task efficiently by using a dynamical arc-marking mechanism. An arc u  v

with dout(u) = din(v) = 1 is called a bridge.

iG


1iG


1iG


iG


1iG


iG


1iG


iG


Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 31

• Our algorithm works in multiple phases.

• In each phase, the arcs in  will be marked or unmarked.

• We also call a virtual node in  an origin and a free node a

 terminus.

• An origin is said to be saturated if one of its outgoing arcs is

 marked; and a terminus is saturated if one of its incoming arcs is

 marked.

1iG


iG


iG


1iG


In the following discussion, we denote  by A.

At the very beginning of the first phase, all the arcs in A are

unmarked.

iG


1iG


Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 32

In the kth phase (k  1), a subgraph A(k) of A will be explored, which is

defined as follows.

• Let V0 be the set of all the unsaturated origins (appearing in).

• Define Vj (j > 0) as below:

Ej-1 = { u  v  E(A) | u  Vj-1, v  V0  V1  ...  Vj-1,

 u  v is unmarked} 

 { v  u  E(A) | u  Vj-1, v  V0  V1  ...  Vj-1,

 v  u is marked},

Vj = { v  V(A) | for some u, u  v is unmarked and

 u  v  Ej-1} 

 { v  V(A) | for some u, v  u is marked and

 v  u  Ej-1}.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 33

Define j* = min{j | Vj  {unsaturated terminus}  }. (Note that the

terminus appearing in are the free nodes relative to Mi+1; and those

appearing in are the free nodes relative to Mi.)

If j* = 1, then

 V(A(k)) = V0  (Vj*  {unsaturated terminus}),

 E(A(k)) = {u  v | u  Vj*-1, and v  {unsaturated terminus}}.

If j* > 1, then

 V(A(k)) = V0  V1  ...  Vj*-1  (Vj*  {unsaturated terminus}),

 E(A(k)) = E0  E1  ...  Ej*-2  {u  v | u  Ej*-1, and

 v  {unsaturated terminus}}.

The sets Vj are called levels.

A(k) is formed with V(A(k)) and E(A(k)) defined below.

1iG


iG


Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 34

In , a node sequence v1, ..., vj, vj+1, ..., vl is called a complete

sequence if the following conditions are satisfied.

(1) v1 is an origin and vl is a terminus.

(2) For each two consecutive nodes vj, vj+1 (j = 1, ..., l - 1), we have

 an unmaked arc vj  vj+1 in A(k), or a marked arc vj+1  vj in A(k).

Our algorithm will explore to find a set of node-disjoint complete

sequences (i.e., no two of them share any nodes.) Then, we mark and

unmark the arcs along each complete sequence as follows.

(i) If (vj, vj+1) corresponds to an arc in A(k), mark that arc.

(ii) If (vj+1, vj) corresponds to an arc in A(k) , unmark that arc.

 Obviously, if for an A(k) there exists j such that Vj = Φ and Vi 

{unsaturated terminus} = Φ for i < j, we cannot find a complete sequence in it.

In this case, we set A(k) to Φ and then the kth phase is the last phase.

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 35

a
c e

g

b h

d f

a
c e

g

b h

d f

a
c e

g

b h

d f

a
c e

g

b h

d f

a
c e

g

b h

d f

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 36

Algorithm subgraph-exploring()

begin

1. let v be the first element in V0;

2. push(v, H); mark v ‘accessed’;

3. while H is not empty do {

4. v := top(H); (*the top element of H is assigned to v.*)

5. while neighbor(v)  F do {

6. let u be the first element in neighbor(v);

7. if u is accessed then remove u from neighbor(v)

8. else {push(u, H); mark u ‘accessed’; v := u;}

9. }

10. if v is neither in Vj* nor in V0 then pop(H)

11. else {if v is in Vj* then output all the elements in H;

 (*all the elements in H make up a complete sequence.*)

12. remove all elements in H;

13. let v be the next element in V0;

14. push(v, H); mark v;

15. }

end

Transitive Closure Compression

Jan. 2023 Yangjun Chen ACS-7102 37

Algorithm node-disjoint-paths(A)

begin

1. k := 1;

2. construct A(1) ;

3. while A(k)   do {

4. call subgraph-exploring(A(k));

5. let P1, ... Pl be all the found complete sequences;

6. for j = 1 to l do

7. { let Pj = v1, v2, ... , vm;

8. mark vi  vi+1 or unmark vi+1  vi (i = 1, ..., m - 1)

 according to (i) and (ii) above;

9. }

10. k := k + 1; construct A(k);

11. }

end

