Topological Order and SCC |

 Edge classification
 Topological order
« Recognition of strongly connected components

Jan. 2011

Classification of Edges

+ It is well known that the preorder (depth-first) traversal of G(V, E)
Introduces a spanning tree (forest) T. With respect to T, E(G) can
be classified into four groups:

* tree edges (E;.): edges appearing in T.

¢ cross edges (E,,..): any edge u — v such that u and v are not on
the same path in T.

+ forward edges (E:,.,arq): @NYy €dge u — v not appearing in T, but
there exists a path fromutovinT

* back edges (E,.): any edge u — v not appearing in T, but there
exists a path fromvtouinT.

graphs-2 - 2

graphs-2 - 3

Directed Acyclic Graph

¢+ DAG — Directed Acyclic Graph (directed graph with no
cycles)

+ Used for modeling processes and structures that have a
partial order:
» Let a, b, ¢ be three elements in a set U.
»a>pandb>c= a>c.
» But may have a and b such that neither a > b nor b > a.

+ We can always make a total order (eithera>borb > a
for all a = b) from a partial order.

graphs-2 - 4

Example

DAG of dependencies for putting on goalie equipment.

hose @t pa

skz;@ mz‘aysD

eg pad —(catch glove

locker

graphs-2-5

Characterizing a DAG

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

+ —: Show that back edge = cycle.

» Suppose there iIs a back edge (u, v). Then v Is ancestor of u in
depth-first forest.

» Therefore, there isa pathvA~u,sov~~ U— Visacycle.

T T T
W OO0
B

graphs-2 - 6

Characterizing a DAG

Lemma 22.11
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

+ < : Show that a cycle implies a back edge.

» C:cyclein G. v : first vertex discovered in c. (u, V) : preceding
edge in c.

» At time d[v], vertices of ¢ form a white path vA~u. Why?

» By white-path theorem, u is a descendent of v in depth-first
forest.

» Therefore, (u, V) is a back edge. @ T OTJ
B

graphs-2 - 7

Depth-first Search

¢ Input: G = (V, E), directed or undirected. No
source vertex given!

¢ Output:
2 timestamps on each vertex. Integers between 1

and 2
. d
o f

V.

V] = discovery time

V] = finishing time

Discovery time - the first time it is encountered during the search.
Finishing time - A vertex is “finished” if it is a leaf node or all
vertices adjacent to it have been finished.

graphs-2 - 8

@) > @) >
W W

graphs-2-9

@ ©®° r&—(©-

graphs-2 - 11

Topological Sort

Sort a directed acyclic graph (DAG) by the nodes’ finishing times.
7
Ol O

© ®® ® ©

H@/\GD

Think of original DAG as a partlal order.
By sorting, we get a total order that extends this partial order.

graphs-2 - 12

Topological Sort

¢ Performed on a DAG.

* Linear ordering of the vertices of G such that if (u, v)
E, then u appears somewnhere before v.

Topological-Sort (G)

1. call DFS(G) to compute finishing times f [v] forallv € V
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: O(JV| + |E]).

graphs-2 - 13

Example

A B D
C E
Linked List:

graphs-2 - 14

Example

A B D
C E
Linked List:

graphs-2 - 15

graphs-2 - 16

Example

A B D
C
Linked List:
E

Example

A B D
C E
Linked List:

¢

graphs-2 - 17

Example

A B D
C E
Linked List:

¢

graphs-2 - 18

Example

A B D
0/' I
(61
C E
Linked List:

¢

graphs-2 - 19

Example

A B D
C E
Linked List:

¢eee

graphs-2 - 20

Example

A B D
C E
Linked List:

L

graphs-2 - 21

Example

C E
Linked List:

L

graphs-2 - 22

Example

A B D
C E
Linked List:

Yoo

graphs-2 - 23

Correctness Proof

¢ Just need to show if (u, v) € E, then f [v] < T [u].

+ \When we explore (u, v), what are the colors of u and v?
» U IS gray.
» Is v gray, too?
* No.
* because then v would be ancestor of u = (u, V) Is a back edge.
« = contradiction of Lemma 22.11 (dag has no back edges).
» IS v white?
» Then becomes descendant of u.
« By parenthesis theorem, dfu] < d[v] < f[v] <f[u].
» Is v black?
« Then v is already finished.

 Since we’re exploring (U, V), we have not yet finished u.
» Therefore, f[v] < f[u].

graphs-2 - 24

Strongly Connected Components

* G is strongly connected if every pair (u, v) of vertices In
G Is reachable from one another.

+ A strongly connected component (SCC) of G is a
maximal set of vertices C — V such that forall u, v e C,
both u ~»v and v v U exist.

o)

graphs-2 - 25

Component Graph

¢ (GSCC = (VSCC’ ESCC)_

¢ \/SCC has one vertex for each SCC in G.

¢ E>CC has an edge if there’s an edge between the
corresponding SCC’s 1n G.

* G>CC for the example considered:

O o)

graphs-2 - 26

G>Cis a DAG

Lemma 22.13

Let C and C' be distinct SCC’sin G, letu,v € C,u’,v' € C’, and
suppose there i1s a path u ~ U’ in G. Then there cannot be a path

V. vvin G.

Proof:
¢ Suppose there isa path v v~ v in G.
¢ Then there are pathsu ~u’ vv and v ~v v~ uin G.

+ Therefore, u and v' are reachable from each other, so they

are not 1n separate SCC’s.

C: C"’

graphs-2 - 27

Transpose of a Directed Graph

¢ G = transpose of directed G.
» GT = (V,E"), E" = {(u, v) : (v, u) € E}.
» GTis G with all edges reversed.

¢ Can create G'" in O(]V| +|E|) time if using adjacency
lists.

¢+ G and G' have the same SCC’s. (u and v are reachable

from each other in G if and only if reachable from each
other in G.)

graphs-2 - 28

Algorithm to determine SCCs

SCC(G)

1. call DFS(G) to compute finishing times f[u] for all u
2. compute G'

3. call DFS(G'), but in the main loop, consider vertices in order of
decreasing f[u] (as computed in first DFS)

4. output the vertices in each tree of the depth-first forest formed in
second DFS as a separate SCC

Time: O(|V] + |E]).

graphs-2 - 29

Example

graphs-2 - 31

graphs-2 - 32

How does 1t work?

¢ |dea:

» By considering vertices in second DFS in decreasing order of
finishing times from first DFS, we are visiting vertices of the
component graph in topologically sorted order.

» Because we are running DFS on G, we will not be visiting any
v from a u, where v and u are in different components.
+ Notation:
» d[u] and f [u] always refer to first DFS.
» Extend notation for d and f to sets of vertices U — V:
» d(U) = min,_{d[u]} (earliest discovery time)
» f(U) = max, i f[u]} (latest finishing time)

graphs-2 - 33

SCCs and DFS finishing times

Lemma 22.14
Let C and C' be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v) € E such thatu e Cand v €C’. Then f(C) > f(C").

Proof:
¢ (Case 1. d(C) <d(C)
» Let x be the first vertex discovered in C.

» At time d[x], all verticesin C and C’ are
white. Thus, there exist paths of white
vertices from x to all vertices in C and C'.

» By the white-path theorem, all vertices in
C and C’ are descendants of x in depth-
first tree.

» By the parenthesis theorem, f [x] = f(C) > d(C) = mi q
A (C) = min,c{d[ul})

A0 <A<tV <f) HEN= et T

graphs-2 - 34

SCCs and DFS finishing times

Lemma 22.14
Let C and C' be distinct SCC’s in G = (V, E). Suppose there is an

edge (u, v) € E such thatu e Cand v €C’. Then f(C) > f(C").

Prooft:
¢ (Case 2: d(C) > d(C")
» Lety be the first vertex discovered in C'. C C’

» At time d[y], all vertices in C" are white and
there is a white path from y to each vertex in
C' = all vertices in C' become descendants
of y. Again, fly] = f(C’).

» At time d[y], all vertices in C are also white.

» By earlier lemma, since there is an edge (u,
V), we cannot have a path from C’ to C.

» S0 no vertex in C is reachable from y.

» Therefore, at time f [y], all vertices in C are
still white.

» Therefore, forall v e C, f[v] > f [y], which
implies that f(C) > f(C’).

graphs-2 - 35

SCCs and DFS finishing times

Corollary 22.15

Let C and C' be distinct SCC’s in G = (V, E). Suppose there is an
edge (u, v) € ET, whereu € Candv € C'. Then f(C) < f(C’).

Proof:
¢ (u,v)e E"= (v,u) € E.

+ Since SCC’s of G and G' are the same, f(C") > f(C), by
Lemma 22.14.

graphs-2 - 36

Correctness of SCC

+ \When we do the second DFS, on GT, start with SCC C
such that f(C) Is maximum.

» The second DFS starts from some x € C, and it visits all
vertices in C.

» Corollary 22.15 says that since f(C) > f(C') for all C = C’, there
are no edges from Cto C' in G'.

» Therefore, DFS will visit only vertices in C.

» Which means that the depth-first tree rooted at x contains
exactly the vertices of C.

graphs-2 - 37

Correctness of SCC

¢ The next root chosen in the second DFS i1s In SCC C’
such that f(C') 1s maximum over all SCC’s other than C.

» DFS visits all vertices in C’, but the only edges out of C’ go to
C, which we’ve already visited.

» Therefore, the only tree edges will be to vertices in C'.

+ \We can continue the process.

+ Each time we choose a root for the second DFS, it can
reach only

» vertices in its SCC—qget tree edges to these,

» vertices in SCC’s already visited in second DFS—qget no tree
edges to these.

graphs-2 - 38

