Topological Order and SCC

- Edge classification
- Topological order
- Recognition of strongly connected components

Classification of Edges

- It is well known that the preorder (depth-first) traversal of $G(V, E)$ introduces a spanning tree (forest) T. With respect to $T, E(G)$ can be classified into four groups:
- tree edges $\left(E_{\text {treet }}\right)$: edges appearing in T.
- cross edges $\left(E_{\text {cross }}\right)$: any edge $u \rightarrow v$ such that u and v are not on the same path in T.
- forward edges $\left(E_{\text {forward }}\right)$: any edge $u \rightarrow v$ not appearing in T, but there exists a path from u to v in T
- back edges $\left(E_{b a c k}\right)$: any edge $u \rightarrow v$ not appearing in T, but there exists a path from v to u in T.

Directed Acyclic Graph

- DAG - Directed Acyclic Graph (directed graph with no cycles)
- Used for modeling processes and structures that have a partial order:
» Let a, b, c be three elements in a set U.
» $a>b$ and $b>c \Rightarrow a>c$.
» But may have a and b such that neither $a>b$ nor $b>a$.
- We can always make a total order (either $a>b$ or $b>a$ for all $a \neq b$) from a partial order.

Example

DAG of dependencies for putting on goalie equipment.

Characterizing a DAG

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

$\bullet \Rightarrow$: Show that back edge \Rightarrow cycle.
» Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
» Therefore, there is a path $v \leadsto u$, so $v \leadsto u \rightarrow v$ is a cycle.

Characterizing a DAG

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

- \Leftarrow : Show that a cycle implies a back edge.
$» c:$ cycle in $G . v:$ first vertex discovered in $c .(u, v)$: preceding edge in C.
$»$ At time $d[v]$, vertices of c form a white path $v \sim \leadsto u$. Why?
» By white-path theorem, u is a descendent of v in depth-first forest.
» Therefore, (u, v) is a back edge.

Depth-first Search

- Input: $G=(V, E)$, directed or undirected. No source vertex given!
- Output:

2 timestamps on each vertex. Integers between 1 and $2|V|$.

- $d[v]=$ discovery time
- $f[v]=$ finishing time

Discovery time - the first time it is encountered during the search. Finishing time - A vertex is "finished" if it is a leaf node or all vertices adjacent to it have been finished.

graphs-2-9

Topological Sort

Sort a directed acyclic graph (DAG) by the nodes' finishing times.

Think of original DAG as a partial order.
By sorting, we get a total order that extends this partial order.

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in$ E, then u appears somewhere before v.

Topological-Sort (G)

1. call $\operatorname{DFS}(G)$ to compute finishing times $f[v]$ for all $v \in V$
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: $\mathrm{O}(|V|+|E|)$.

Example

Linked List:

Example

Linked List:

Example

Linked List:
(2/3)
E

Example

Linked List:

Correctness Proof

- Just need to show if $(u, v) \in E$, then $f[v]<f[u]$.
- When we explore (u, v), what are the colors of u and v ?
» u is gray.
» Is V gray, too?
- No.
- because then v would be ancestor of $u \Rightarrow(u, v)$ is a back edge.
- \Rightarrow contradiction of Lemma 22.11 (dag has no back edges).
» Is V white?
- Then becomes descendant of u.
- By parenthesis theorem, $d[u]<d[v]<f[v]<f[u]$.
» Is V black?
- Then v is already finished.
- Since we're exploring (u, v), we have not yet finished u.
- Therefore, $f[v]<f[u]$.

Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \leadsto v$ and $v \leadsto u$ exist.

Component Graph

- $G^{\mathrm{SCC}}=\left(V^{\mathrm{SCC}}, E^{\mathrm{SCC}}\right)$.
- $V^{\text {SCC }}$ has one vertex for each SCC in G.
- E^{SCC} has an edge if there's an edge between the corresponding SCC's in G.
- $G^{\text {SCC }}$ for the example considered:

G^{SCC} is a DAG

Lemma 22.13

Let C and C^{\prime} be distinct SCC's in G, let $u, v \in C, u^{\prime}, v^{\prime} \in C^{\prime}$, and suppose there is a path $u v u^{\prime}$ in G. Then there cannot be a path $v^{\prime} \sim v$ in G.

Proof:

- Suppose there is a path $v^{\prime} v v$ in G.
- Then there are paths $u v u^{\prime} v v^{\prime}$ and $v^{\prime} v v v u$ in G.
- Therefore, u and v^{\prime} are reachable from each other, so they are not in separate SCC's.
graphs-2-27

Transpose of a Directed Graph

- $G^{T}=$ transpose of directed G.
» $G^{T}=\left(V, E^{T}\right), E^{T}=\{(u, v):(v, u) \in E\}$.
» G^{T} is G with all edges reversed.
- Can create G^{T} in $\mathrm{O}(|V|+|E|)$ time if using adjacency lists.
- G and G^{T} have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^{T}.)

Algorithm to determine SCCs

$\underline{\operatorname{SCC}(G)}$

1. call $\operatorname{DFS}(G)$ to compute finishing times $f[u]$ for all u
2. compute G^{T}
3. call $\operatorname{DFS}\left(G^{T}\right)$, but in the main loop, consider vertices in order of decreasing $f[u]$ (as computed in first DFS)
4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\mathrm{O}(|V|+|E|)$.

Example

Example

Example

How does it work?

- Idea:
» By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
» Because we are running DFS on G^{T}, we will not be visiting any v from a u, where v and u are in different components.
- Notation:
» $d[u]$ and $f[u]$ always refer to first DFS.
» Extend notation for d and f to sets of vertices $U \subseteq V$:
» $d(U)=\min _{u \in U}\{d[u]\}$ (earliest discovery time)
$» f(U)=\max _{u \in U}\{f[u]\}$ (latest finishing time)

SCCs and DFS finishing times

Lemma 22.14

Let C and C^{\prime} be distinct SCC's in $G=(V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C^{\prime}$. Then $f(C)>f\left(C^{\prime}\right)$.

Proof:

- Case 1: $d(C)<d\left(C^{\prime}\right)$
 first tree.
» By the parenthesis theorem, $f[x]=f(C)>$ $f\left(C^{\prime}\right)$.

```
d(x)<d(v)<f(v)<f(x)
```

$$
\begin{aligned}
d(C) & \left.=\min _{u \in C}\{d[u]\}\right) \\
f(C) & =\max _{u \in C}\{f[u]\}
\end{aligned}
$$

SCCs and DFS finishing times

Lemma 22.14

Let C and C^{\prime} be distinct SCC's in $G=(V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C^{\prime}$. Then $f(C)>f\left(C^{\prime}\right)$.

Proof:

- Case 2: $d(C)>d\left(C^{\prime}\right)$
» Let y be the first vertex discovered in C^{\prime}.
» At time $d[y]$, all vertices in C^{\prime} are white and there is a white path from y to each vertex in $C^{\prime} \Rightarrow$ all vertices in C^{\prime} become descendants of y. Again, $f[y]=f\left(C^{\prime}\right)$.
» At time $d[y]$, all vertices in C are also white.
» By earlier lemma, since there is an edge (u, v), we cannot have a path from C^{\prime} to C.
» So no vertex in C is reachable from y.

» Therefore, at time $f[y]$, all vertices in C are still white.
» Therefore, for all $v \in C, f[v]>f[y]$, which implies that $f(C)>f\left(C^{\prime}\right)$.

SCCs and DFS finishing times

Corollary 22.15

Let C and C^{\prime} be distinct SCC's in $G=(V, E)$. Suppose there is an edge $(u, v) \in E^{T}$, where $u \in C$ and $v \in C^{\prime}$. Then $f(C)<f\left(C^{\prime}\right)$.

Proof:

- $(u, v) \in E^{T} \Rightarrow(v, u) \in E$.
- Since SCC's of G and G^{T} are the same, $f\left(C^{\prime}\right)>f(C)$, by Lemma 22.14.

Correctness of SCC

- When we do the second DFS, on G^{T}, start with SCC C such that $f(C)$ is maximum.
» The second DFS starts from some $x \in C$, and it visits all vertices in C.
» Corollary 22.15 says that since $f(C)>f\left(C^{\prime}\right)$ for all $C \neq C^{\prime}$, there are no edges from C to C^{\prime} in G^{T}.
» Therefore, DFS will visit only vertices in C.
» Which means that the depth-first tree rooted at x contains exactly the vertices of C.

Correctness of SCC

- The next root chosen in the second DFS is in SCC C^{\prime} such that $f\left(C^{\prime}\right)$ is maximum over all SCC's other than C.
» DFS visits all vertices in C^{\prime}, but the only edges out of C^{\prime} go to C, which we've already visited.
» Therefore, the only tree edges will be to vertices in C^{\prime}.
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only
» vertices in its SCC—get tree edges to these,
» vertices in SCC's already visited in second DFS-get no tree edges to these.

