Search engine in web brows

Programming Language for
XML

Semi-Structured Data Mod

WEB Databases <+ — —

ACS-4902

Database

Index Techniques

Yangjun Chen

Static Hashing and Dynami
Hashing

SQL Language and JDBC

Database Basics

Jan. 2025

" Client-Server Database Architecture

Database Basics - Entity-Relationship Data Modeling

- ER-to-Relation-Mapping

Jan. 2025 Yangjun Chen

» Client-server database system Architecture

Interface

|

net\:/vork Database client

I
I
\4
N
e
e
7
e
4
7
e

Database server

Database
management

1

Jan. 2025 Yangjun Chen ACS-4902

Example:

X

Jan. 2025 Yangjun Chen ACS-4902

« ER-to-Relational mapping
1. Create a relation for each strong entity type

» For each atomic attribute associated with the entity
type, an attribute in the relation will be created.

« Composite attributes are not included. However the
atomic attributes comprising the composite attribute
must appear in the pertinent relation.

2. Create a relation for each weak entity type
* Include primary key of owner (an FK - foreign key)
« owner’s PK + partial key becomes PK

3. For each binary 1:1 relationship choose an entity and

] 1C] O LI \] d Al [\] 1(Al

DUteS C C IEld

Jan. 2025 Yangjun Chen ACS-4902

4. For each binary 1:n relationship, choose the n-side entity
and include an FK with respect to the other entity. Include any
attributes of the relationship

5.For each binary M:N relationship, create a relation for the
relationship
« include PKs of both participating entities and any attributes
of the relationship
» PK Is the concatenation of the participating entity PKs

6.For each multivalued attribute create a new relation
« include the PK attributes of the entity type
« PK is the PK of the entity type and the multivalued attribute

Jan. 2025 Yangjun Chen ACS-4902

/.For each n-ary relationship, create a relation for the
relationship
» include PKs of all participating entities and any attributes of
the relationship
« PK is the concatenation of the participating entity PKs

Jan. 2025 Yangjun Chen ACS-4902

« Specialization and Generalization

« Specialization is the process of defining a set of sub-entities of some entity
type. Generalization is the opposite approach/process of determining a
supertype based on certain entities having common characteristics.

* e.g. employees may be paid by the hour or a salary (part vs full-time)
* e.g. students may be part-time or full-time; graduate or undergraduate
» these are similar to 1:1 relationships, but they always involve entities of one
(super)type
* these are ‘is-a’ relationships

graduate undergraduate

Jan. 2025 Yangjun Chen ACS-4902

-
-

o The bubble and the d
Imply disjoint subtypes

-~
~
-~
-~
~
~
~
~~
~
-~
-~
~
~~
~
~
~
~
~
~~
-~

+ Thearc implies graduate
graduate undergraduate and undergraduate are
subtypes of student

« Participation of supertype may be mandatory or optional
» Subtypes may be disjoint or overlapping

« a predicate (on an attribute) determines the subtype: e.g. attribute
Student_class

Jan. 2025 Yangjun Chen ACS-4902

The bubble and the o
_.--» imply overlap subtype)

-

Jan. 2025 Yangjun Chen ACS-4902

» Mapping to a relational database
4 choices:

1. Create separate relations for the supertype and each of the
subtypes.

2. Create relations for the subtypes only - each contains
attributes from the supertype.

3. (disjoint subtypes) Create only one relation - includes all
of the attributes for the supertype and all for the subtypes,
and one discriminator attribute.

4. (overlapping subtypes) Create only one relation -
Includes all of the attributes for the supertype and all for the
subtypes, and one logical discriminator attribute per subtype.

PK Is always the same - determined from the supertype

Jan. 2025 Yangjun Chen ACS-4902

Example for super- &
sub-types: choice 1

- -

EMPLOYEE

SECRETARY TECHNICIAN ENGINEER

Jan. 2025 Yangjun Chen ACS-4902

Example for super- &
sub-types: choice 2

.}

CAR

TRUCK

Jan. 2025 Yangjun Chen ACS-4902

Example for super- &
sub-types: choice 3

reccny

EMPLOYEE

Jan. 2025 ACS-4902

Yangjun Chen

Example for super- &
sub-types: choice 4

Jan. 2025 Yangjun Chen ACS-4902

O Shared SubClass
— a subclass with more than one superclass

— leads to the concept of multiple inheritance:
engineering manager inherits attributes of
engineer, manager, and salaried employee

Rule: an engineering-
manager must be an

engineer, a manager, and a
salaried-emp.

X ’

Jan. 2025 Yangjun Chen ACS-4902

Categories

0 Models a single class/subclass with more than one
super class of different entity types

Rule: an owner is either a Note: set union symbol

person, a bank, or a
company.

Rule: a person might be an

X ’

Jan. 2025 Yangjun Chen ACS-4902

Categories

O A category can be either total or partial

Rule: an account holder is either a
person or a company.

partial category

\ J Rule: a person may, or may not,
be an account owner

Jan. 2025 Yangjun Chen ACS-4902

Categories

O A category can be either total or partial

total category

Rule: a property is either a
building or a lot

Jan. 2025 Yangjun Chen

0 Mapping of Categories

00 Generate a table for each entity type
Involved

0 Superclasses with different key

0 Specify a new key called surrogate key for
the category, which will also be included in
the tables for the superclasses as foreign
keys

0 Superclasses with the same keys

Jan. 2025 Yangjun Chen ACS-4902

0 Categories - Superclasses with different keys

Person (SSN, DrLicNo, Name, Address, Ownerid)
Bank (Bname, BAddress, Ownerid) Note the Foreig™ E
Company (CName, CAddress, Ownerid)

Jan. 2025 Yangjun Chen ACS-4902

0 Categories - Superclasses with the same keys

—

: : e av
Registered Vehicle (VehiclelD, LicensePlateNo) Note.tWKeys
. Foreigh

e 10

Jan. 2025 Yangjun Chen ACS-4902

Jan. 2025

Outline: SQL and JDBC

DDL
- creating schemas
- modifying schemas
DML
- select-from-where clause
- group by, having, order by
- update

- View

Yangjun Chen ACS-4902

DDL - creating schemas

*Create schema schemaname authorization user;
Create table tablename ...
eattributes, data types
sconstraints:
sprimary keys
foreign keys
on delete set null|cascade|set default
*on update set null|cascade|set default
on insert set null|cascade|set default
suniqueness for secondary keys

Jan. 2025 Yangjun Chen ACS-4902

DDL - Examples:

*Create schema:

Create schema COMPANY authorization JSMITH;

«Create table:

Create table EMPLOYEE

GYY=
MINIT
LNAME
SSN
BDATE
ADDRESS
SEX
SALARY
SUPERSSN
DNO

VARCHAR(15)
CHAR,
VARCHAR(15)
CHAR(9)

DATE,
VARCHAR(30),
CHAR,
DECIMAL(10, 2),
CHAR(9),

INT NOT NULL,

NOT NULL,

NOT NULL,
NOT NULL,

Jan. 2025 Yangjun Chen

ACS-4902

DDL - Examples:

«Specifying constraints:
Create table EMPLOYEE
(..,
DNO INT NOT NULL DEFAULT 1,
CONSTRAINT EMPPK
PRIMARY KEY(SSN),
CONSTRAINT EMPSUPERFK
FOREIGN KEY(SUPERSSN) REFERENCES EMPLOYEE(SSN)
ON DELETE SET NULL ON UPDATE CASCADE,
CONSTRAINT EMPDEPTFK
FOREIGN KEY(DNO) REFERENCES DEPARTMENT(DNUMBER)
ON DELETE SET DEFAULT ON UPDATE CASCADE);

Create domain:

Jan. 2025 Yangjun Chen ACS-4902

Strategies to maintain data consistency: set null or cascade

~ delete

Employee
ssmo | e e SUpervisor
123456789 234589710
234589710 null ™
Employee
ssm | e e SUpervisor
123456789 234589710
—— delete

Jan. 2025

Yangjun Chen

ACS-4902

Strategies to maintain data consistency: set null or cascade

Employee
ssmo | e e SUpervisor
123456789 234589710
234589710 null ™
~~ delete
Employee
ssmo [e SUpervisor
123456789 null -
et null

Jan. 2025

Yangjun Chen

ACS-4902

Strategy to maintain data consistency: set default

Department
DNUMBER| ... | L.
e
T — delete
Employee
ssn | e DNO
123456789 4 -

" change this

Jan. 2025 Yangjun Chen ACS-4902

Strategy to enforce referential integrity: cascade

Employee
SSn

123456789 \
delete

Works On \ Works On
ssn pNo hours ssn pno hours
123456789 - 20 —
*

Jan. 2025 Yangjun Chen ACS-4902

DML - Queries (the Select statement)
select attribute list
from table list
where condition
group by expression
having expression

order by expression ;

Select fname, salary from employee where salary > 30000 ==

Jan. 2025 Yangjun Chen ACS-4902

Select salary from employee; Salary
30000

40000 |
the 25000 Duplicate
e Fig. 7.6 for ible:

Joyee. 43000 arePo™
38000
25000
25000
55000

Select fname, salary from employee where salary > 30000;
Fname Salary

Franklin 40000
Jennifer 43000

Jan. 2025 Yangjun Chen ACS-4902

Correlated Subguery example:

Suppose we want to find out who is working on a project that is not
located where their department is located.

*Note that the Project table has the location for the project
*Note that the Works_on relates employees to projects

*Note that the Employee table has the department number for an
employee, and that Dept_locations has the locations for the
department

We’ll do this 1n two parts:
*a join that relates employees and projects (via works_on)

*a subqguery that obtains the department locations for a given

Jan. 2025 Yangjun Chen ACS-4902

EMPLOYEE

DEPT _LOCATIONS

PROJECT

’

Jan. 2025 Yangjun Chen ACS-4902

EMPLOYEE

DEPARTMENT

K

PROJECT

DEPT _LOCATIONS

WORKS_ON
DEPENDENT Figure 7-7:

Jan. 2025 Yangjun Chen ACS-4902

Correlated Subqueries:

A 3-way join to bring related employee and project data together:

SELECT employee.ssn, employee.fname, employee.lname,
project.pnumber, project.plocation

FROM employee, project, works on

WHERE == —-—= 1

employee.ssn = works_on.essn and } A 3-way join !

project.pnumber = works_on.pno

l We’ll see this join again where
1 | Inner Joins are discussed

Jan. 2025 Yangjun Chen ACS-4902

Correlated Subqueries:

Now we incorporate a correlated subquery to restrict the result to
those employees working on a project that is not where their
department is located:

SELECT employee.ssn, employee.fname, employee.lname,
project.pnumber, project.plocation

FROM employee, project, works on

WHERE

employee.ssn = works_on.essn and

project.pnumber = works_on.pno and

plocation NOT IN

(SELECT dlocation FROM dept_locations WHERE

Jan. 2025 Yangjun Chen ACS-4902

Correlated Subqueries:

Now we incorporate a correlated subquery to restrict the result to
those employees working on a project that is not where their
department is located:

SELECT employee.ssn, employee.fname, employee.lname,
project.pnumber, project.plocation

FROM employee , project, works on

WHERE

employee.ssn = works_on.essn and

project.pnumber = works_on.pno and

plocation NOT IN

(SELECT dlocation FROM dept_locations y WHERE

Jan. 2025 Yangjun Chen ACS-4902

Subqueries with Exists and Not EXists:

Who is working on every project?

2,
SELECT e.ssn, e.fname, e.lname 24 “or,
FROM employee AS %fe@/
WHERE
NOT EXISTS
t (SELECT * FROM project AS p WHERE
NOT EXISTS

A

(SELECT * FROM works_on AS w WHERE w.essn=".ssn
AND vv.pno=p.pno));

Jan. 2025 Yangjun Chen ACS-4902

EMPLOYEE

Example:
ssn |fhame(lname
| R I
WORK_ ON ,
essn | PNo hours ;
_1 N LSRR
I 2 PROJECT
2 3 PNo |[Pname
3 I 1 |......
3 2)
3 3

Jan. 2025 Yangjun Chen ACS-4902

To develop a database application, JDBC or ODBC should
be used.

JDBC — JAVA Database Connectivity
ODBC — Open Database Connectivity

Jan. 2025 Yangjun Chen ACS-4902

Connection to a database:
1. Loading driver class

Class.forName (“sun.jdbc.odbc.JdbcOdbcDriver”) ;

2. Connection to a database

String url = “jdbc:odbc:<databaseName>";

Connction con =
DriverManager.getConnection (url, <userName>,

<password>)

Jan. 2025 Yangjun Chen

3. Sending SQL statements

Statement stmt = con.createStatement () ;

ResultSet rs = stmt.executeQuery (“"SELECT *
FROM Information WHERE Balance >= 5000”) ;

4. Getting resM

while (rs.next()) N
{

}

Jan. 2025

Yangjun Chen

import java.sqgl.*;

public class DataSourceDemol
{ public static void main (String[] args)
{ Connection con = null;
try
{//load driver class
Class.forName{“sun.jdbs.odbs.JdbcOdbcDriver”) ;

//data source
String url = “jdbs:odbc:Customers”;

//get connection
con = DriverManager.getConnection (url,

Jan. 2025 Yangjun Chen

//create SQL statement
Statement stmt = con.createStatement () ;

//execute query
Result rs = stmt.executeQuery ("SELECT *
FROM Information WHERE Balance >= 50007) ;

String firstName, lastName;
Date birthDate;

float balance;

int accountLevel;

Jan. 2025 Yangjun Chen

Jan. 2025

while (rs.next ())

{firstName = rs.getString (“FirstName”) ;
lastName = rs.getString(“lastName”) ;
balance = rs.getFloat (“Balance”);

System.out.println(firstName + “ % +

\\

lastName + %, balance = + balance) ;

}
}

catch (Exception e)
{e.printStackTrace() ;}
finally
{try{con.close ()}
catch (Exception e){ }

Yangjun Chen

Programming in a dynamical environment:
Disadvantage of DataSourceDemol.:

If the IDBC-ODBC driver, database, user names, or
password are changed, the program has to be modified.

Solution:

file name:

Configuration file: /

config.driver=sun.jdbc.odbc.JdbcOdbcDriver
config.protocol=jdbc
config.subprotocol=o0dbc

config.dsname=Customers
config.username=sa config - datasource name

<property> = <property wvalue>

Jan. 2025 Yangjun Chen ACS-4902

import java.sqgl.*;
import java.lo.*;
import java.util.Properties;

public class DatabaseAccess

{ private String configDir;
//directory for configuration file
private String dsDriver = null;

private String dsProtocol = null;
private String dsSubprotocol = null;
private String dsName = null;

private String dsUsername = null;
private String dsPassword = null;

Jan. 2025 Yangjun Chen

public DatabaseAccess (String configDir)

{ this.configDir = configDir; }
| Qétc
public DatabaseAccess () QW@Ot,
{ this(™.”); } v Lop,,

//source: data source name
//configFile: source configuration file)

public Connection getConnection(String source,
String configFile) throws SQLException, Exception
{ Connection con = null;

try

Jan. 2025 Yangjun Chen

1f (prop != null)

{dsDriver = prop.getProperty(source + “.driver”);

dsProtocol =

prop.getPropert (source + “.protocol”);
dsSubprotocol = prop.getPropert (source +
“.subprotocol”) ;
1f (dsName == null)

dsName = prop.getProperty (source +

Y .dsName”) ;
if (dsUsername == null)

dsUsername = prop.getProperty(source +
“.username”) ;

if (dsPassword == null)

dsPassword = prop.getProperty(source +
“.password”) ;

Jan. 2025 Yangjun Chen

//load driver class
Class.forName (dsDriver) ;

//connect to data source
String url = dsProtocol + “:” + dsSubprotocol + “:”

+ dsName;

con = DriverManager.getConnection (url, dsUsername,
dsPassword)

}

else

throw new Exception (“* Cannot find property file +
configFile) ;

return con;

Jan. 2025 Yangjun Chen

//dir: directory of configuration file

//filename: file name

public Properties loadConfig(String dir, String filename)
throws Exception

{ File inFile = null;

Properties prop = null;

try

{ inFile = new File(dir, filename):;
1f (inFile.exists ()
{ prop = new Properties();

prop.load(new FileInputStream(inFile))
}

else throw new Exception(“* Error 1n finding “ +
inFile.toString())

Yangjun Chen

Using class DatabaseAccess, DataSourceDemol should be
modified a little bit:

DatabaseAccess db = new databaseAccess () ;

con = db.getConnection (“config”,
“datasource.config”) ;

Jan. 2025 Yangjun Chen

Database updating:
import java.sqgl.*;

public class UpdateDemol
{ public static void main (String[] args)
{ Connection con = null;
try
{
//get connection
Databaseaccess db = new DatabaseAccess () ;
con = db.getConnection (“config”,
“datasource.config”) ;

Jan. 2025 Yangjun Chen

//execute update

Statement stmt = con.CreateStatement();

int account = stmt.executeUpdate (“UPDATE

Information SET Accountlevl = 2 WHERE

Balance >= 500007) ;

System.out.println (account + “ record has been
updated”) ;

//execute insert
account = stmt.executeUpdate (VINSERT INTO
Information VALUE (‘David’, ‘Feng’, "05/05/1975",
2000, 1)7");
System.out.println (account + “ record has been
inserted”);
}
catch (Exception e) {e.printStackTrace(); }
finally {try{con.close(); catch (Exception e){ }}

Jan. 2025 Yangjun Chen

Outline: Hashing (5.9, 5.10, 3. ed.; 13.8, 4t 5thed.; 17.8, 6% ed.)
» external hashing
» static hashing & dynamic hashing

 hash function

« mathematical function that maps a key to a bucket
address

« collisions
« collision resolution scheme
* open addressing
e chaining

Jan. 2025 Yangjun Chen ACS-4902

Mapping a table into a file

Employee

ssn | name | bdate | sex |address | salary

vping
file

 Block (or page)

- access unit of operating system

- Dblock size: range from 512 to 4096 bytes
» Bucket

- access unit of database system

- A bucket contains one or more blocks.

Jan. 2025 Yangjun Chen ACS-4902

External Hashing

 Consider a file comprising a primary area and an
overflow area

Records hash to one of
many primary buckets

Records not fitting into
the primary area are
relegated to overflow

« Common implementations are static - the number of primar

Jan. 2025 Yangjun Chen ACS-4902

External Hashing
«Consider a static hash file comprising M primary buckets
*We need a hash function that maps the key onto {0, 1, ... M-1}
If M is prime and Key Is numeric then
Hash(Key)= Key mod M
can work well

* A collision may occur when more than one records hash to the
same address

*\We need a collision resolution scheme for overflow handling
because the number of collisions for one primary bucket can
exceed the bucket capacity

Jan. 2025 Yangjun Chen ACS-4902

Overflow handling

» Open addressing

» subsequent buckets are examined until an open record position
Is found

 no need for an overflow area

« consider records being inserted R1, R2, R3, R4, R5, R6, R7
with bucket capacity of 2 and hash values 0, 1,2,1, 1,0, 3

How do we
handle retrieval,
deletion?

Jan. 2025 Yangjun Chen ACS-4902

« consider records being inserted R1, R2, R3, R4, R5, R6, R7
with bucket capacity of 2 and hash values 0, 1,2,1, 1,0, 3

Jan. 2025 Yangjun Chen ACS-4902

R1, R2, R3, R4, R5, R6, R7
hash values: 0,1,2,1,1,0, 3

Jan. 2025 Yangjun Chen ACS-4902

Overflow handling

 Chaining

* a pointer in the primary bucket points to the first overflow
record

« overflow records for one primary bucket are chained together

« consider records being inserted R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10, R11.

 with bucket capacity of 2 and hash values 1, 2, 3, 2, 2, 1, 4,
2,3, 3, 3.

* deletions?

Jan. 2025 Yangjun Chen ACS-4902

R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11
1,2,3,2,2,1,4,2,3,3,3

Jan. 2025 Yangjun Chen ACS-4902

Overflow handling

« Multiple Hashing

« when collision occurs a next hash function is tried to find an
unfilled bucket

» eventually we would resort to chaining

* note that open addressing can suffer from poor performance
due to islands of full buckets occurring and having a tendency
to get even longer - using a second hash function helps avoid
that problem

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing
« A dynamic hash file:
grows and shrinks gracefully

« initially the hash file comprises M primary buckets numbered 0,
1,... M-1

« the hashing process is divided into several phases (phase O,
phase 1, phase 2, ...). In phase j, records are hashed according

to hash functions h;(key) and h;,,;(key)
» hi(key) = key mod (2*M)

phase 0: hy(key) = key mod (2°*M), h,(key) = key mod (21*M)
phase 1: h,(key) = key mod (21*M), h,(key) = key mod (2°*M)

3%

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing
» h;(key) Is used first; to split, use h;,,(key)
« splitting a bucket means to redistribute the records into two
buckets: the original one and a new one. In phase j, to determine
which ones go into the original while the others go into the new

one, we use h;,,(key) = key mod 2/*1*M to calculate their
address.

« splitting buckets
splitting occurs according to a specific rule such as
- an overflow occurring, or
- the load factor reaching a certain value, etc.
« a split pointer keeps track of which bucket to split next

° J* ith

, o o o LI

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing

1. What is a phase?

When to split a bucket?
How to split a bucket?

What bucket will be chosen to split next?

CHE SOl 1N

How do we find a record inserted into a linear hashing file?

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

« initially suppose M=4

* hy(key) = key mod M; i.e. key mod 4 (rightmost 2 bits)
* h,(key) = key mod 2*M

Capacity of a bucket is 2.

As the file grows, buckets
split and records are

redistributed using h,(key)
= key mode 2*M.

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example
« collision resolution strategy: chaining
» split rule: if load factor > 0.70
* Insert the records with key values:
0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

Buckets to be added during the expansion
/\

a R

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

 when inserting the sixth record (using h, = Key mod M) we
would have

n=0 before the split

(n 1s the split point,
l.e., the point to the
bucket to be split.)

0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

 when inserting the sixth record (using h, = Key mod M) we
would have

— n=0 before the split

(n 1s the point to the
bucket to be split.)

0 1 2 3

 but the load factor 6/8=0.75 > 0.70 and so bucket O must be
split (using h, = Key mod 2M):

L

n=1 after the split
load factor: 6/10=0.6

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

insert()

n=1
N[0 |oad factor: 7/10=0.7
no split

0 1 2 3 4

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

insert()

n=1
load factor: 8/10=0.8
split using h;.

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

o n=2
load factor:
8/12=0.66
0100 0101 no split

overflow

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example
insert(

)

overflow

load factor:
9/12=0.75
split using h;.

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

0100 0101 1110

n=3
load factor: 9/14=0.642
no split.

0100 0101 1110

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

0100 0101 1110

n=3
load factor: 10/14=0.71
split using h;.

0100 0101 1110 0111

Jan. 2025 Yangjun Chen ACS-4902

Linear Hashing, example

0100 0101 1110 0111

.

load factor: 10/16=0.625
no split.

At this point, all the 4 (M) buckets are split. The size of the primary
area becomes 2M. n should be set to 0. It begins a second phase.

« In the second phase, we will use h; to insert records and h, to split
a bucket.

Jan. 2025

Yangjun Chen ACS-4902

How to find a KEY 1n a linear hash file?

M — the size of the initial primary area
J — the last phase
n — the next bucket to be split

Algorithm find(KEY, M, j, n)

If j = 0 then return hy(KEY) = KEY mod M;
else

BUCKET_LOC := h;,(KEY) = KEY mod 2! M;
If BUCKET_LOC < n then return h;(KEY)
else return BUCKET _LOC;

Jan. 2025 Yangjun Chen ACS-4902

Database Index Techniques

B -tree

« Multiple-key indexes
« kd —tree

* Quad - tree

e R—tree

« Bitmap

Jan. 2025 Yangjun Chen ACS-4902

B*-tree Structure
non-leaf node (internal node or a root)
0 Pl’ Kl’ PZ’ K29 T Pq-l’ Kq-li Pq > (q < pinternal)

* Ky <K;<...<K,; (ie.1t’s an ordered set)

For any key value, X, in the subtree pointed to by P,

Ki; <X<ZK; forl<i<q
X <K, fori=1
4, <X fori=gq

Each internal node has at most pi.ny POINtErS.
Each node except root must have at least | p;.....,/2 | pointers.

Jan. 2025 Yangjun Chen ACS-4902

A B*-tree

pinternal - 3’
pleaf = 2.

3 -5, 6|1 - 8) 19 i 12/

|
]
1

data file

Jan. 2025 Yangjun Chen ACS-4902

B*-tree Structure
leaf node (terminal node)
* < (Ky, Pry), (Ky Pry), oo, (Kgps Prgg)s Prexe >

¢ Ky <Ky< < Koy

* Pr; points to a record with key value K, or Pr; points to a page
containing a record with key value K;

« Maximum of p,,: key/pointer pairs.

« Each leaf has at least [p,../2 | keys.

« All leaves are at the same level (balanced).

P points to the next leaf node for key sequencing.

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file;

Data file:

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file:

Jan. 2025 Yangjun Chen

Store a B+-tree on hard disk

Algorithm:

push(root, -1, -1);
while (S Iis not empty) do
{ Xx:=pop();
store x.data in file F; stack: S
assume that the address of x in F is ad;

If x.address-of-parent = -1 then {
y := x.address-of-parent: address-of-parent: a page number
7 := x.position: in the file F, where the parent of the

write ad in page y at position z in F; node is stored.

data | address-of- | position
parent

data: all the key values in a node

}

let X4, ..., X, be the children of x;
for (i = k to 1) {push(x;, ad, i)};

position: a number indicating what
Is the ranking of a child. That is,
whether it is the first, second, ...,

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file:

» 39 P 7% 8N 2
VAR)
) 4 4
1| 3]]| 77 5] #’6|7| > 8| " 9|| 12| 5
v ooy v vy v v v 6
7

0 1 2 3

Stack:

Jan. 2025 Yangjun Chen

B+-tree stored in a file:

/N °
pl k1p2k2p3 1
2 39 P 7% 8N 2
/ O\)
) 4 4
1| 3]]| 77 5] +6|7|=8| " 9|| 12| 5
v ooy v vy v v v .
7

0 1 2 3

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file:

/N °
p1k1p2k2p3 1

2 39 P 7% 8N 2

/ O\)

) 4 4

1| 3]]| 77 5] +6|7|=8| " 9|| 12| 5
v ooy v vy v v v .
7

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file:

/N °
pl k1p2k2p3 1
2 39 P 7% 8N 2
/ O\)
) 4 4
1| 3]]| 77 5] +6|7|=8| " 9|| 12| 5
v ooy v vy v v v .
7

0 1 2 3

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file;

\ 4

)

w

< ©

)

\‘

.9

(')

/O

~N o o1~ W N

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file:

/N °
pl k1p2k2p3 1
2 39 P 7% 8N 2
/ O\)
) 4 4
1| 3]]| 77 5] +6|7|=8| " 9|| 12| 5
v ooy v vy v v v .
7

0 1 2 3

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file:

/N °
pl k1p2k2p3 1
2 39 P 7% 8N 2
/ O\)
) 4 4
1| 3]]| 77 5] +6|7|=8| " 9|| 12| 5
v ooy v vy v v v .
7

0 1 2 3

Jan. 2025 Yangjun Chen ACS-4902

B+-tree stored in a file:

N
/N °
pl k1p2k2p3 1
o 3! P 7 8 2
/ \)
\ 4 4
1| 3]]| 71 5] +6|7| > 8| " 9| 12| 5
ooy v vy v v oo 6
:
ot |47867 920 78 811
0 1 2 3

Jan. 2025 Yangjun Chen ACS-4902

Index Structures for Multidimensional Data

* Multiple-key indexes
kd-trees

Quad trees

R-trees

Bit map

Indexes over texts

Jan. 2025 Yangjun Chen ACS-4902

Multiple-key indexes

(Indexes over more than one attributes)

Employee

age salary

Jan. 2025 Yangjun Chen ACS-4902

Multiple-key indexes

(Indexes over more than one attributes)

Jan. 2025 Yangjun Chen

Multiple-key indexes

60 g

a set of salaries of all

those employees of age

between 50 and 60

Jan. 2025 Yangjun Chen ACS-4902

kd-Trees

(A generalization of binary search trees)

A kd-tree Is a binary tree in which interior nodes have an associated
attribute a and a value v that splits the data points into two parts:
those with a-value less than v and those with a-value equal to or
larger than v.

Jan. 2025 Yangjun Chen ACS-4902

kd-Trees

Jan. 2025

salary 80

70, 110

85, 140

salary 300

30, 260 25,400

45,350

Yangjun Chen ACS-4902

kd-trees

Jan. 2025 Yangjun Chen

3-dimensional data division

Alejes

v

age

Jan. 2025 Yangjun Chen

Insert a new entry into a kd-tree:

Insert(35, 500):

\ salary 150

salary 80

Jan. 2025 Yangjun Chen ACS-4902

Insert a new entry into a kd-tree:

Insert(35, 500): salary 150

.

salary 80

Jan. 2025 Yangjun Chen ACS-4902

Quad-trees

In a Quad-tree, each node corresponds to a square region in two
dimensions, or to a k-dimensional cube in k dimensions.

« If the number of data entries in a square Is not larger than what
will fit in a block, then we can think of this square as a leaf node.

« If there are too many data entries to fit in one block, then we treat
the square as an interior node, whose children correspond to its
four quadrants.

Jan. 2025 Yangjun Chen ACS-4902

Quad-trees name | age| --- |salary
25 | ... | 400

400k

Jan. 2025 Yangjun Chen

Quad-trees

0] 100
SW NW
__—SE NE

25, 60 50, 275

46, 60 60, 260 / \\
50, 75 85, 140 | |50, 120 30, 260 25, 400
50, 100 70, 110 45, 350

Jan. 2025 Yangjun Chen ACS-4902

R-trees

An R-tree Is an extension of B-trees for
multidimensional data.

« An R-tree corresponds to a whole area (a rectangle for two-di-
mensional data.)

* In an R-tree, any interior node corresponds to some interior
regions, or just regions, which are usually a rectangle

 Each region x in an interior node n Is associated with a link to a
child of n, which corresponds to all the subregions within x.

Jan. 2025 Yangjun Chen ACS-4902

R-trees

In an R-tree, each interior node
contains several subregions.

A

In a B+-tree, each interior node kK ki k. k k.. k
. .- . 1 ™2 -1 0N N+l q
contains a set of keys that divides

Jan. 2025 Yangjun Chen ACS-4902

Suppose that the local cellular phone company adds a POP (point
of presence, or base station) at the position shown below.

100

——

__

Jan. 2025 Yangjun Chen ACS-4902

R-trees

100

/1 (0,0), (60,50)) | | ((20, 20), (100, 80))

4 Gamn]

housel| school | pipeline

l l l

Jan. 2025 Yangjun Chen ACS-4902

Insert a new region r into an R-tree.
100

""""""""""""""""""""""""""""""""""""""

((70, 5), (95, 15))

——

Jan. 2025 Yangjun Chen ACS-4902

Insert a new region r into an R-tree.

1. Search the R-tree, starting at the root.
2. If the encountered node Is internal, find a subregion into which
r fits.

« If there Is more than one such region, pick one and go to its
corresponding child.

« If there iIs no subregion that contains r, choose any subregion
such that it needs to be expanded as little as possible to contain
r.

| ((0, 0), (60, 50)) \‘\((20, 20), (100, 80))

e AN

Jan. 2025 Yangjun Chen ACS-4902

Two choices:

« If we expand the lower subregion, corresponding to the first
leaf, then we add 1050 square units to the region.

* If we extend the other subregion by lowering its bottom by 15
units, then we add 1200 square units.

\4

// (0, 0),) | 1.((20, 20), (100, 80))
roadl | road2| housel school | house2 | pipeline|pop

Jan. 2025 Yangjun Chen ACS-4902

Insert a new region r into an R-tree.
100

""""""""""""""""""""""""""""""""""""""

((40, 40), (50, 50))

——

Jan. 2025 Yangjun Chen ACS-4902

Insert a new region r into an R-tree.

3. If the encountered node v is a leaf, insert r into it. If there is no
room for r, split the leaf into two and distribute all subregions in
them as evenly as possible. Calculate the ‘parent’ regions for the
new leaf nodes and insert them into v’s parent. If there is the
room at v’s parent, we are done. Otherwise, we recursively split
nodes going up the tree.

((0, 0), (100, 100))

—)

Jan. 2025 Yangjun Chen ACS-4902

« Split the leaf into two and distribute all the regions evenly.
« Calculate two new regions each covering a leaf.

| ((0,0), (60, 50)) | N ((20, 20), (100, 80))

roadl | road2 | housel school | house2 | pipeline| pop

Jan. 2025 Yangjun Chen ACS-4902

Insert the first object into an R-tree:

Jan. 2025

— R =

%)

((70, 5), (95, 15))

housel

Yangjun Chen

Bit map

1. Imagine that the records of a file are numbered 1, ..., n.

2. A bitmap for a data field F is a collection of bit-vectors of
length n, one for each possible value that may appear in the
field F.

3. The vector for a specific value v has 1 in position i if the ith
record has v in the field F, and it has O there if not.

Jan. 2025 Yangjun Chen ACS-4902

Example

Employee

age

Bit maps for age: Bit maps for salary:
30: 1100000 55: 0000110 60: 1100000 80: 0000010

Jan. 2025 Yangjun Chen ACS-4902

Example

Employee

age

Bit maps for age: Bit maps for salary:
30: 1100000 55: 0000110 60: 1100000 80: 0000010

Jan. 2025 Yangjun Chen ACS-4902

Range guery evaluation

Select ename
From Employee
Where 40 < age < 50 and 50 £ salary £ 78

We first find the bit-vectors for the age values in (30, 50); there are only two:
0010000 and 0001000 for 40 and 50, respectively.

Take their bitwise OR: 0010000 v 0001000 = 0011000.

Next find the bit-vectors for the salary values in (50, 78) and take their bitwise
OR: 1100000 v 0011000 v 0000100 = 1111100.

0011000
A 1111100

Jan. 2025 Yangjun Chen ACS-4902

Compression of bitmaps

Suppose we have a bitmap index on field F of a file with n records,
and there are m different values for field F that appear in the file.

Vq Vs Vim

nbits < |5 B 0 ... O(mn) space

Jan. 2025 Yangjun Chen ACS-4902

Compression of bitmaps

Run-length encoding:

Run in a bit vector: a sequence of i1 0’s followed by a 1.
(010101007010)(K0[0]0) Ruupum—
—

Run compression: a run r is represented as another bit string »’
composed of two parts.

part 1: i expressed as a binary number, denoted as b(i).
part 2: Assume that b,(i) is j bits long. Then, part 2 is a sequence
of (j — 1) 1’s followed by a 0, denoted as b,(i).

Jan. 2025 Yangjun Chen ACS-4902

Compression of bitmaps

Run-length encoding:

Run in a bit vector s: a sequence of 1 0’s followed by a 1.

(010070701010 (0/0]0) puupumm—
—

r, = 00000001
b =7=111b,=110 ==

r,’= 110111

r,= 0001

Jan. 2025 Yangjun Chen ACS-4902

Starting at the beginning, find the first 0

000000010001 at the 3" bit, so j = 3. The next 3 bits are
—

r,’r,’ = 1101111011

111, so we determine that the first integer |
is 7. In the same way, we can decode1011.

Decoding a compressed sequence s:

1. Scan s from the beginning to find the first O.

2. Let the first O appears at position j. Check the next j bits. The
corresponding value iIs a run.

3. Remove all these bits from s. Go to (1).

Yangjun Chen ACS-4902

Jan. 2025

Uncompression:

r,’r,’ = 1101111011
J r:=00000001

r,’=1011 mm) r,yr,= 000000010001

I r=0001

[]

Jan. 2025 Yangjun Chen

Inverted files

An inverted file - A list of pairs of the form: <key word, pointer>

_fl<-
-

dog| —

Jan. 2025 Yangjun Chen ACS-4902

Inverted files

When we use “buckets” of pointers to occurrences of each word,
we may extend the idea to include in the bucket array some

Information about each occurrence.

cat ——f

X ’

Yangjun Chen ACS-4902

Jan. 2025

Web Databases

Not included in the mid-term

* \Web database

 System architecture

* Web programming language:
- PHP
- Node.Js

Jan. 2025 Yangjun Chen

 What is a web database?
- A database accessed from the Internet

- E-commence and other Internet applications are designed to
Interact with the user through web interfaces

- An online flight ticket booking system

web interface:

Input - customer information: time, location, airport, destination

output — departure time, arrival time, flight number, price

database access:

Jan. 2025 Yangjun Chen ACS-4902

e Three-tier architecture:

Client

Application server
or
Web server

Database server

Jan. 2025

Gui
Web interface

|

Application Programs
Web pages (HTML)

|

Presentation
layer

|

Business
logic layer

|

DB management system

DB service layer

Yangjun Chen ACS-4902

» Web server language (script language): PHP

- PHP - a script language, used to generate
dynamic HTML pages.

PHP programs are executed on Web server computers.
(This is in contrast to some scripting languages, such as

JavasScript, which are executed on client computers.)

- The official PHP website has installation instructions for
PHP: http://PHP.org.net

- PHP 5 and later versions can work with a MySQL database
using:

Jan. 2025 Yangjun Chen ACS-4902

* Asimple PHP example

- The program prompts a user to enter the first and last name
and then prints a welcome message to that user.

<?PHP
//Printing a welcome message if the user submitted his/her name
/lthrough the PHP form
if ($_post['user name’]) {
print("Welcome, “);
print($_post[‘'user name’]); }
else { print <<< HTML _
<FORM method="post” action="$ SERVER['PHP_SELF’]">
Enter your name: <input type="text” name="user_name”>

<INPUT type="submit” value="SUBMIT NAME"></FORM>

?>
Jan. 2025 Yangjun Chen ACS-4902

John Smith

Jan. 2025 Yangjun Chen ACS-4902

- A PHP script is enclosed with a pair of tags:
start tag: <?php
end tag: ?>
Stored in a file, named, for example,
greeting.php

and located in an address, for example,

http://www.myserver.com/examples/greeting.php

- You can also put it isa HTML file.

Jan. 2025 Yangjun Chen ACS-4902

post: (data transfer through post array)

http://www.myserver.com/examples/greeting.php

form
form created 5
DB
Input
\/

Web client

Jan. 2025 Yangjun Chen ACS-4902

get: (data transfer through get array)

http://www.myserver.com/examples/another.php?mygrade=85

Data: Input
mygrade=85

echo $ get['mygrade’]
/This will print 85.

Jan. 2025 Yangjun Chen ACS-4902

« Connecting to a database

require ‘DB.php’
$d = DB::connect{'mysqli://acct1:pass12@www.host.com/db1’};
if (DB:isError($d)){die(“cannot connect ...”, $d->getMessage());}

$q = $d->query(“CREATE TABLE EMPLOYEE
(Emp_id INT,

Name VARCHAR(15),
Job VARCHAR(10),
Dno INT)”);
if (DB:isError($q)) {die(“table creation not successful ...”, $d->getMessage());
$d ->setErrorHandling();
R —

$eid = $d->nextiID((EMPLOYEEFE’);
$qg = $d->query(“INSERT INTO EMPLOYEE VALUES

Jan. 2025 Yangjun Chen ACS-4902

What is Node.|s?

* Node.|s Is a script language
* Node.|s IS an open source server environment

* Node.js runs on various platforms (Windows,
Linux, Unix, Mac OS X, etc.)

* Node.|s uses JavaScript on the serve

Jan. 2025 Yangjun Chen ACS-4902

' --------- wlu!)"' ‘.u.l' v

WAHISAE

var http = require('http’);
http.createServer(function (reqg, res) {
res.writeHead (200, {'Content-Type": 'text/ntml'});

res.end(‘Hello World!"); //write a response and then
//end the response

1).listen(8080),

Save the file on your computer:
C:\Users\Your Name\myfirst.js

Jan. 2025 Yangjun Chen ACS-4902

« Command Line Interface

-Node.js files must be initiated in the "Command Line
Interface" program of your computer.

-Navigate to the folder that contains the file
"myfirst.js", the command line interface window
should look something like this:

C:\Users\Your Name>

Jan. 2025 Yangjun Chen ACS-4902

« EXxecution of myfirst.js

-Now, your computer works as a server!

-If anyone tries to access your computer on port 8080,
they will get a "Hello World!" message in return!
-Start your internet browser, and type in address:

http://localhost:8080

ACS-4902

Jan. 2025 Yangjun Chen

« MySQL databases in a web server

- You can download a free MySQL database at
http://www.mysql.com/downloads/

- Install MySQL Driver

« Once you have MySQL up and running on your
computer, you can access It by using Node.js.

« To access a MySQL database with Node.js, you need a
MySQL driver.

 Install MySQL from

Jan. 2025

Yangjun Chen ACS-4902

« To download and install the "mysqgl" module, open the
Command Terminal and execute the following:

C:\Users\Your Name>npm install mysq|

- a package manager for installing Node.js packages.

Jan. 2025 Yangjun Chen ACS-4902

e Create Connection
demo_db_connection.js

var mysql = require('mysql");

var con = mysql.createConnection({
host: "localhost",
user: 'yourusername",
password: "yourpassword"

b;

con.connect(function(err) {
If (err) throw err;
console.log("Connected!");

b
" A B S\ OIS e >Pdedemocleachmnection. js

Jan. 2025 Yangjun Chen ACS-4902

Creating a Database

- Create a database named "mydb”

var mysql = require('mysql’);
var con = mysql.createConnection({

host: "localhost",

user: “yourusername",

password: "yourpassword" Save the code above in a file
}; called "demo create db.js*
con.connect(function(err) { C:\Users\Your Name>node

If (err) throw err; demo_create db.js

console.log("Connected!");

con.query("CREATE DATABASE mydb", function (err,
result) {if (err) throw err;

console.log("Database created"); }); });

Jan. 2025 Yangjun Chen ACS-4902

Creating a table

- Create a table named “customers”

var mysql = require('mysql’);
var con = mysql.createConnection({
host: "localhost", user: "yourusername*,
password: "yourpassword", database: ""'mydb"'});
con.connect(function(err) {
If (err) throw err;
console.log("Connected!");
var sgql = "CREATE TABLE customers (name
VARCHAR(255), address VARCHAR(255))";
con.query(sql, function (err, result) {
If (err) throw err;
console.log("Table created");});

Jan. 2025 Yangjun Chen ACS-4902

var mysqgl = require('mysql’);
var con = mysgl.createConnection({
host: "localhost”,
user: "yourusername”,
password: "yourpassword”,
database: "mydb"
ok
con.connect(function(err) {
If (err) throw err;
console.log("Connected!™);
var sql = "INSERT INTO customers (name, address)
VALUES (*Company Inc', "Highway 37')"";
con.query(sql, function (err, result) {
If (err) throw err;
console.log("'1 record inserted");

b;
1).listen(8080);

Jan. 2025 Yangjun Chen ACS-4902

Query a Database

- Use SQL statements to read from (or write to) a
MySQL database

con.connect(function(err) {
If (err) throw err,;
console.log("Connected!");

database: “mydb”
var sgl = “select * from customers where name = 'David"’;

con.query(sql, function (err, result) {

If (err) throw err;
console.log(*"'Result: ** + result);

D;
b;

Jan. 2025 Yangjun Chen ACS-4902

Semistructured-Data Model

» Semistructured data

« XML

 DTD (Document type definitions)
« XML schema

Yangjun Chen ACS-4902

Semistructured Data

The semistructured-data model plays a special role in database
systems:

1. It serves as a model suitable for integration of databases, I.e.,
for describing the data contained in two or more databases
that contain similar data with different schemas.

2. It serves as the underlying model for notations such as XML
that are being used to share information on the web.

The semistructured data model can represent information more
flexibly than the other models — E-R, UML, relational model,
ODL (Object Definition Language).

Jan. 2025 Yangjun Chen ACS-4902

Semistructured Data representation

A database of semistructured data is a collection of nodes.

« Each node is either a leaf or interior

 Leaf nodes have associated data; the type of this data can be any
atomic type, such as numbers and strings.

 Interior nodes have one or more arcs out. Each arc has a label,
which indicates how the node at the head of the arc relates to the
node at the tail.

« One interior node, called the root, has no arcs entering and
represents the entire database.

Jan. 2025 Yangjun Chen ACS-4902

starin

Clty starof year

street

: Mark_ OF:1%¢ B'wood Star War 1977
Fisher Hamill

Jan. 2025 Yangjun Chen ACS-4902

Semistructured Data representation

A label L on the arc from node N to node M can play one of two roles.

1. It may be possible to think of N as representing an object or
entity, while M represents one of its attributes. Then, L represents

the name of the attribute.
2. \We may be able to think of N and M as objects or entities and L

as the name of a relationship from N to M.

Jan. 2025 Yangjun Chen ACS-4902

Semistructured Data model can be used to integrate information

L egacy-database problem: Databases tend over time to be used in so
many different applications that it is impossible to turn them off and
copy or translate their data into another database, even if we could
figure out an efficient way to transform the data from one schema to
another.

In this case, we will define a semistructured data model over all
the legacy databases, working as an interface for users. Then,

any query submitted against the interface will be translated
according to local schemas.

- QT

Jan. 2025 Yangjun Chen ACS-4902

root ‘
w';

address

name
Q .
O Stiy w‘ e O
O O
some other user«——| Interface some other
applicatiu wllcatlons
v v
legacy legacy
database database
— —

Stars(name, address(street, city)) Stars(name, street, city)

Jan. 2025 Yangjun Chen ACS-4902

: t
Integrated interface: 0 ‘

star wi

name

Q :

O O

name address city

O

for $m in root/star

for $m in root/star
where $m//city = ‘Malibu’ - X-Query

return <star>{$m/name}</star>

o

ecomposing

from Stars from Stars

where address.city = ‘Malibu’ where address.city = ‘Malibu’
-

Jan. 2025 Yangjun Chen ACS-4902

XML (Extensible Markup Language)

XML is a tag-based notation designed originally for marking
documents, much like HTML. While HTML'’s tags talk about the
presentation of the information contained in documents — for

Instance, which portion is to be displayed in italics or what the
entries of a list are —

Tags:

openingtag - <....>, e.g., <Foo>
closing tag - </ ... >, e.g., </Foo>

A pair of matching tags and everything that comes between them is

Jan. 2025 Yangjun Chen ACS-4902

XML with and without a schema

XML is designed to be used in two somewhat different modes:

allows you to invent your own tags, much
like the arc-labels in semistructured data. But there 1s no

predefined schema. However, the must be
obeyed, or the document is not well-formed.
Involves a (Document Type Definition) that

specifies the allowed tags and gives a grammar for how they
may be nested. This form of XML is intermediate between the
strict-schema such as the relational model, and the completely
schemaless world of semistructured data.

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” 7> +-———- prologue
<StarMovieData>
<Star>
. <Name>Carrie Fishes</Name>
:<Address>
: <Street>123 Maple St.</Street><City>Hollywood</City>
</Address>
<Address>
. <Street>5 Locust Ln.</Street><City>Malibu</City>
<Address>
</Star>
<Star>
. <Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>
. <City>Brentwood</City>
</Star>
<Movie>
. <Title>Star Wars</title><Year>1977</Year>

Jan. 2025 Yangjun Chen ACS-4902

Attributes

As in HTML, an XML element can have attributes (name-value
pairs) with its opening tag. An attribute is an alternative way to
represent a leaf node of semistructured data. Attributes, like tags,
can represent labeled arcs in a semisructured-data graph.

<Movie title = “Star War” year = 1977> <Movie year = 1977>
</Movie> <Title>*“Star Wars”</title>

@) </Movie>

<Movie>
<Title>*“Star Wars”’</title>

Jan. 2025 Yangjun Chen ACS-4902

Attributes that connect elements

An Important use for attributes Is to represent connections in a
semistructured data graph that do not form a tree.

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” 7>
<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

</Star>
<Star starID = “mh” starredIn = “sw’”>
</Star>
<Movie movielD = “sw” starsOf = “cf”, “mh”>
. <Title>Star Wars</title><Year>1977</Year>
'</Movie>

Jan. 2025 Yangjun Chen ACS-4902

Namespace

There are situations in which XML data involves tags that come from two or
more different sources. So we may have conflicting names. For example, we
would not want to confuse an HTML tag used in a text with an XML tag that
represents the meaning of that text. To distinguish among different vocabularies

for tags in the same document, we can use a for a set of tags.

To indicate that an element’s tag should be interpreted as part of a certain space,
we use the attribute In Its opening tag:

xmins: name = <Universal Resource Identifier>

Example:

<md : StarMoviedata xmins : md = http://infolab.stanford.edu/movies>

Jan. 2025 Yangjun Chen ACS-4902

XML storage

There are three approaches to storing XML to provide some efficiency:

1. Store the XML data in a parsed form, and provide a library of tools to navigate
the data in that form. Two common standards are called (Simple API for
XML), and (Document Object Model).

2. MongoDB — non-tabular databases

In Mongo DB, a document is stored as a set of property-value pairs (JSON format).

[{title : “postl”,
body: “body of post 17,
category: “news”,
time: Date()
¥
{ title : “post2”,
body: “body of post 2”,

Jan. 2025 Yangjun Chen ACS-4902

3. Represent the document and their elements as relations, and use a conventional,
relational DBMS to store them.

In order to represent XML documents as relations, we should give each document
and each element of a document a unique ID. For each document, the ID could be

Its URL or its path in a file system.
A possible relational database schema:

DocRoot(doclID, rootElmentiD)
ElementValue(elementlID, value)

SubElement(parentID, childID, position)
ElementAttribute(elementlD, name, value)

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” 7>
< md : StarMovieData xmlns : md = http://infolab.stanford.edu/movies >
<Star starlD = “cf” starredIn = “sw’”>
<Name>Carrie Fishes</Name>
<Address>
<Street>123 Maple St.</Street><City>Hollywood</City>
</Address>
<Address>
<Street>5 Locust Ln.</Street><City>Malibu</City>
<Address>
</Star>
<Star starID = “mh” starredIn = “sw’’>
<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>
<City>Brentwood</City>
</Star>
<Movie movielD = “sw” starsOf = “cf”, “mh”>
<Title>Star Wars</title><Year>1977</Year>

Jan. 2025 Yangjun Chen ACS-4902

DocRoot elementValue

Doc-id | element-id PYELFE
rootElementID
_ starMovieData

2 s

subElement B

parentld Regllfel[e position elemenAttld value

2
3
3

P

1.
1.
1.
1.

L
eIementAttrlbute 14

Jan. 2025 Yangjun Chen ACS-4902 w

Transform an XML document to a tree

<book>
<title>

“The Art of Programming”

</title>
<author> <book>

“D. Knuth” /\

<title> <author> <year>
</author> ‘ ‘

<year>

“The Art of “D. Knuth” “1969”

\\1969// . .
Programming

Jan. 2025 Yangjun Chen

Transform an XML document to a tree

Read a file into a character array A:

stack S:

node value | Pointer to node

Jan. 2025 Yangjun Chen

Transform an XML document to a tree

Algorithm:

Scan array A; Let A[1] be the character currently

encountered;
If A[1] is 'Y<’ and A[i+1] 1s a character then {

generate a node x for A[i..j],

where A[3J] 1s ‘>’ directly after A[1]; for an opening tag.

let y = S.top() .pointer to node;

make x be a child of y; S.push(A[1..7]],
If A[i] is ' *“ ', then { Generating a
genearte a node x for A[i..]j], leaf node for a
where A[J] is ' ” ' directly after A[i]; string value.
let y = S.top () .pointer to node;
make x be a child of y;

\ 4

Popping out the stack when
meeting a closing tag.

Jan. 2025 Yangjun Chen ACS-4902

Document Type Definition (DTD)

A DTD is a set of grammar-like rules to indicate how elements
can be nested.

DTD general form:

<IDOCTYPE root-tag [
<IELEMENT element-name (components)>

O W A Y O w

Jan. 2025 Yangjun Chen ACS-4902

Stars.dtd

<IDOCTYPE Stars |
<IELEMENT Stars (Star*)>
<IELEMENT Star (Name, Address*, Movies)>
<IELEMENT Name (#PCDATA)>
<IELEMENT Address (Street, City)>
<IELEMENT Street (#PCDATA)>
<IELEMENT City (#PCDATA)> &l
<IELEMENT Movies (MoVie*)> oqcane'symbol
<IELEMENT Movie (Title, Year)>
<IELEMENT Title (#PCDATA)>
<IELEMENT Year (#PCDATA)>

| Be

Jan. 2025 Yangjun Chen ACS-4902

<IDOCTYPE Stars [

<Stars> <IELEMENT Stars (Star*)>
<Star> e <IELEMENT Star (Name, Address*, Movies)>
e carme Fishes</ame> <IELEMENT Name (#PCDATA)>
| <Street>123 Maple St.</Street> <IELEMENT Address (Street, City)>
| <City>HOIIyW00d</City> <IELEMENT Street (#PCDATA)>
</Address> <IELEMENT City (#PCDATA)>
<Movies> <IELEMENT Movies (Movie*)>
. <Movie> <IELEMENT Movie (Title, Year)>
| <Title>Star Wars</Title> <IELEMENT Title (#PCDATA)>
| SRR <IELEMENT Year (#PCDATA)>
'</Movie>
<Movie>
| <Title>Empire Striker</Title>
i <Year>1980</Year>
</Movie>
:<MOVie>
i <Title>Return of the Jedi</Title><Year>1983</Year>
'</Movie>
'</Movies>

5</Star>

Jan. 2025 Yangjun Chen ACS-4902 “

<IDOCTYPE Stars [

Eotar> _ <IELEMENT Stars (Star*)>

e Mark Hamill<fame> <IELEMENT Star (Name, Address*, Movies)>

: <Street>456 Oak Rd.</Street> <!ELEMENT Name (#PCDATAP
<City>Brentwood</City> <IELEMENT Address (Street, City)>

:</Addre55> <IELEMENT Street (#PCDATA)>

<Movies> <IELEMENT City (#PCDATA)>

. :<Movie> <IELEMENT Movies (Movie*)>

<Title>Star Wars</Title> <IELEMENT Movie (Title, Year)>

i</M;\\lfi‘Za>f >1977</Year> <IELEMENT Title (#PCDATA)>
<Movies <IELEMENT Year (#PCDATA)>
| <Title>Empire Wars</Title> >
i <Year>1980</Year>
'</Movie>
<Movie>
| <Title>Return of the Jedi</Title>
. <Year>1983</Year>

. </Movie>

. </Movie>
. </Star>
</Stars>

Jan. 2025 Yangjun Chen ACS-4902 “

<IDOCTYPE Stars [

<IELEMENT Stars (Star*)>

<IELEMENT Star (Name, Address*, Movies)>

<!IELEMENT Name (#PCDATA)> <? Xml version = “1.0” encoding = “utf-8” standalone = “yes” 7>
<IELEMENT Address (Street, City)> Bt

<IELEMENT Street (#PCDATA)> <Star<>Name>Carrie ichese/Names
<IELEMENT City _(#PCDA'_I'A)> <Addresss
<IELEMENT Movies (Movie*)> <Street>123 Maple St.</Street>
<IELEMENT Movie (Title, Year)> <City>Hollywood</City>
<IELEMENT Title (PCDATA)> e
<IELEMENT Year (#PCDATA)> <Street>5 Locust Ln.</Street>
<City>Malibu</City>
<Address>
</Star>
<Star>

<Name>Mark Hamill</Nam>
<Street>456 Oak Rd.</Street>
<City>Brentwood</City>
</Star>
<Movie>
<Title>Star Wars</title><Year>1977</Year>
</Movie>

> B ¢ N g L </Stars>

Jan. 2025 Yangjun Chen ACS-4902 w

Attribute Lists

An element may be associated with an attribute list:

<IATTLIST element-name attribute-name type>

ELEMENT Movie EMPTY>

<IATTLIST Movie
title CDATA #REQUIRED

year CDATA #REQUIRED
genre (comedy | drama | sciFi | teen) #IMPLIED

<Movie title = “Star Wars” year = “1977” genre = “sciF1”/>

Jan. 2025 Yangjun Chen ACS-4902

Usinga DTD

If a document is intended to conform to a certain DTD, we

a) Include the DTD itself as a to the document, or

b) In the opening line, refer to the DTD, which must be stored
separately in the file system accessible to the application that
IS processing the document.

<?xml version = “1.0” encoding = “utf-8” standalone = “no”?>
<IDOCTYPE Star SYSTEM * >

M — kevword indicati

Jan. 2025

Yangjun Chen ACS-4902

<?xml version="1.0" ?>

<IDOCTYPE r [

<I[ELEMENT r ANY >

<I > ..

<|EtEMEm Sﬁm S <mmmmeeeees A DTD is included as a preamble.
<I[ELEMENT c (a*)>

<I[ELEMENT d (b*)>

<r>
<a>

<a><a>

<c>

<a>

<[a>
</c>
<a>

<a><[a>

ACS-4902

Jan. 2025 Yangjun Chen

<?xml version = "1.0" encoding = "UTF-8" standalone = "no" ?>
<IDOCTYPE address SYSTEM "address.dtd">
<address>

<name>Tanmay Patil</name>

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>
</address>

Jan. 2025 Yangjun Chen ACS-4902 m

<IDOCTYPE StarMovieData [
<I[ELEMENT StarMovieData

<IELEMENT Star
<IATTLIST Star

(Star*, Movie*)>
(Name, Address+)>

starld ID #REQUIRED |dentifiers
StarredIn IDREFS#IMPLIED and Reference
>
<IELEMENT Name (#PCDATA)>
<IELEMENT Address (Street, City)>
<IELEMNT Street (#PCDATA)>
<IELEMENT City (#PCDATA)>

<IELEMENT Movie

<IATTLIST Movie
movield ID
startOf

>
<IELEMENT Title

1>
Jan. 2025

Yangjun Chen

(Title, Year)>

#REQUIRED

IDREFS#REQUIRED

(#PCDATA)>

ACS-4902

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” 7>
<StarMovieData>

i<Star starID = “cf” starredIn = “sw’”>

. <Name>Carrie Fishes</Name>

.| I<Address>

P <Street>123 Maple St.</Street><City>Hollywood</City>

.+ </Address>

.| i<Address>

[<Street>5 Locust Ln.</Street><City>Malibu</City>

. <Address> <IDOCTYPE StarMovieData [

; </Star> <IELEMENT StarMovieData (Star*, Movie*)>

: \ _ o« 59 TP L <IELEMENT Star (Name, Address+)>

5 5<Star starID sta_rredIn > CIATTLIST Star

1+ <Name>Mark Hamill</Name> starld 1D #REQUIRED

L e StarredIn INREFS #IMPLIED

<Street>456 Oak Rd.</Street> <IELEMENT Name (#PCDATA)>

i ! : : <ELEMENT Address (Street, >

. <City>Brentwood</City> <IELEMNT Street (HPCDATA)>

.+ <laddress> <IELEMENT City (#PCDATA)>

: : <IELEMENT Movie (Title, Year)=>

i </ Star.> . <IATTLIST Movie

E <Movie movielD = 7 starOf = * 7> movieln D #REQUIRED

.| <Title>Star Wars</title><Year>1977</Yea e HRACEES SaeQulieD

. </Movie> <IELEMENT Title (#PCDATA)>
wma> W <I[ELEMENT Year (#PCDATA)>

Jan. 2025 Yangjun Chen ACS-4902

XML Schema

More powerful — give the schema designer extra capabilities.

- allow us to declare types, such as integers or float for simple
elements.

- allow arbitrary restriction on the number of occurrences of
subelements.

- give us the ability to declare keys and foreign keys.

Jan. 2025 Yangjun Chen ACS-4902

The Form of an XML schema

« An XML schema description of a schema is itself an XML
document. It uses the namespace at the URL

http://www.w3.0rg/2001/XMLSchema

that is provided by the World-Wide-Web Consortium.
*Each XML-schema document has the form:

<? xml version = ‘1.0" encoding = “utf-8” 7>

SERRSIENEYKmins: xs = “http://www.w3.0rg/2001/
XMLSchema™

</xs: schema>

Jan. 2025 Yangjun Chen ACS-4902

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

Elements

An important component in an XML schema is the element,
which i1s similar to an element definition ina DTD.

The form of an element definition in XML schema Is:

<xs: element name = element name type = element type

constraints and/or structure information
</xs: element>

<xs: element name = “Title” type = “xs: string” />
<xs: element name = “Year” type = “xs: integer” />

DTD <IDOCTYPE root-tag [

<IELEMENT Title (#PCDATA)>

<IELEMENT Year (#PCDATA)>

Jan. 2025 Yangjun Chen ACS-4902

Complex Types

A complex type in XML Schema can have several forms, but the
most common Is a sequence of elements.

<xs:. complexType name = type name >
<XS:. sequence>
list of element definitions
</Xs: sequence>

</xs: complexType>

<xS: complexType name = type name
list of attribute definitions
</xs: complexType>

BIBR <!'DOCTYPE root-tag [
<IELEMENT element-name (components)>

B AN {

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” 7>
<xs: schema xmlns: xs = “http://www.w3.0rg/2001/XMLSchema”>

<xs:.complexType name = “movieType”>
. <xs: sequence>

. <xs: element name = “Title” type = “Xs: string” />

. </xs: element name = “Year” type = “XS: integer” />
. </Xs: sequence>
</xs: complexType>

<xs: complexType name = fype name >
<XS: sequence>

list of element definitions
<Xs: element name = “Movies”> </xs: sequence>

<xs: complexTyp> </xs: complexType>

. <Xs:sequence>

B s: clement name = “Movie” type = “movieType”
minOccurs = “0” maxOcurs = “unbouned” /

, </xs: sequence>
</xs: complexTyp> A schema for movies in XML schema.

</Xs: schema>

Jan. 2025 Yangjun Chen ACS-4902

The above schema (in XML schema) is equivalent to the
following DTD.

<IDOCTYPE Movies |
<IELEMENT Movies (Movie*) >
<IELEMENT Movie (Title, Year) >

<IELEMENT Title (#PCDATA) >
<IELEMENT Year (#PCDATA) >

O W A Y O w

Jan. 2025 Yangjun Chen ACS-4902

Attributes

A complex type can have attributes. That is, when we define a
complex type T, we can include instances of element <xs:
attribute>. Thus, when we use T as the type of an element E (in a
document), then E can have (or must have) an instance of this
attribute. The form of an attribute definition is:

<xs: attribute name = attribute name type = type name

other information about attribute

<xs: attribute name = “title” type = “xs: integer” default = “0” />
<xs: attribute name = “year” type = “xs: integer” use = “required” />

O W A Y O w

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” 7>
<xs: schema xmlins: xs = “http://www.w3.0rg/2001/XMLSchema”>

<xs: complexType name = “movieType”>
<XS: attribute name = “title” type = “XS: string” use = “required” />
<XS: attribute name = “year” type = “XS: integer” use = “required” />

</Xs: COmp|eXType> <xs:complexType name = “movieType”™>
<XS. sequence>

<xs: element name = “Movies”> <xs: element name = “Title” type = “xs: string” />

</xs: element name = “Year” type = “xs: integer” />

<xs: complexTyp> </xs: sequence>
' <XS:. sequence> </xs: complexType>

NXS: element name = “Movie” type = “movieType”
minOccurs = “0” maxOcurs = “unbouned”

, <Ixs: sequence>
</xs: complexTyp> A schema for movies in XML schema.

. <Ixs: element> Itself is a document.
</Xs: schema>

Jan. 2025 Yangjun Chen ACS-4902

The above schema (in XML schema) is equivalent to the
following DTD.

<IDOCTYPE Movies |
<IELEMENT Movies (Movie*) >
<IELEMENT Movie EMPTY >
<IATTLIST Movie

Title CDATA #REQUIRED

CDATA #REQUIRED

<IDOCTYPE Movies [
<IELEMENT Movies (Movie*) >
<IELEMENT Movie (Title, Year) >
<IELEMENT Title (#PCDATA) >
<IELEMENT Year (#PCDATA) >

"W

Jan. 2025 Yangjun Chen ACS-4902

Restricted Simple Types

It is possible to create a restricted version of a simple type such
as integer or string by limiting the values the type can take. These
types can then be used as the type of an attribute or element.

1. Restricting numerical values by using mininclusive to state the lower
bound, maxInclusive to state the upper bound.
2. Restricting values to an numerated type.

<xs: simpleType name = type name >
<XS: restriction base = base type >

upper and/or lower bounds
</Xs: restriction>
</xs: simpleType>

iy <XS: enumeration value = some value />

Jan. 2025 Yangjun Chen ACS-4902

<xs: simpleType name = ‘movieYearType” >
<Xs: restriction base = “xs: integer” >

<xs:minlnclusive value = “1915” />
</Xs: restriction>
</xs: simpleType>

<xs: simpleType name = “genretype” >
<Xs: restriction base = “xs: string” >
<xs: enumeration value = “comedy” />

<XS: enumeration value = “drama’” />
<XS: enumeration value = “sciFi” />
<XS: enumeration value = “teen” />
<[Xs: restriction>
5 </Xs: simpleType>
P Ixs: simpleType

——

Jan. 2025 Yangjun Chen ACS-4902

Keys in XML Schema

An element can have a , which is a field or several
fields to uniquely identify the element among a certain class C of
elements).

field: an attribute or a subelement.
selector: a path to reach a certain node in a

document tree.

xs: key name = key name >
<xs: selector xpath = path description >

<xs: field xpath = path description >
more field specification
</xs: key>

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” 7>
<xs: schema xmlns: xs = “http://www.w3.0rg/2001/XMLSchema”>

<xs: simpleType name = “genretype” >
., <Xs: restriction base = “xs: string” >
. <xs: enumeration value = “comedy” />
<xs: enumeration value = “drama” />
<xs: enumeration value = “sciFi” />
. <xs: enumeration value = “teen” />
. </[xs: restriction>
</xs: simpleType>

<xs: complexType name = “movieType”>
. <xs: attribute name = “title” type = “xs: string” />
<xs: attribute name = “year” type = “xs: integer” />

(13 29 (13

<xs: attribute name = enre’”’ type = “‘genreType

29

Jan. 2025 Yangjun Chen ACS-4902

<xS: element name = “Movies”™>
. <xs: complexTyp>

.| <xs: sequence>

<xs: element name = “Movie” type = “movieType”
.| minOccurs = “0” maxOcurs = “unbouned” />

. | <Ixs: sequence>

. i</xs: complexTyp>

. <xs: key name = “movieKey”>

<xs: selector xpath “Movie” />

| <xs: field xpath = “@Title” />

. <xs: field xpath = /Y'gar” />

1 . /
'</xs: key> L/ // Vs
</xs:element> 7 v
</xs:schema> /7 / — —
2N <? Xml version;= “1.0” encoding = “utf-8” standalone = “yes” 7>
- A <Movigs> ! :
/Movies/ M@We - ;

/Mowes/ V|e@T|tIe

</Movies>

Jan. 2025 Yangjun Chen ACS-4902

Foreign Keys in XML Schema

We can declare that an element has, perhaps deeply nested within
It, a field or fields that serve as a reference to the key for some

other element. It is similar to what we get with ID’s and IDREF’s
In DTD.

In DTD: untyped references
In XML schema: typed references

<xs: keyref name = foreign-key name
refer = key name>
<xs: selector xpath = path description >

<xs: field xpath = path description >
more field specification
</xs: keyref>

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” 7>

<xs: schema xmlns: xs = “http://www.w3.0rg/2001/XMLSchema’>

<xs: element name = “Stars”>

. <xs: complxType>

<XS. sequence>

1<x8: element name = “Star” minOccurs = “1” maxOccurs = “unbounded”>
<xs: complexType>

<XS. sequence>

. <xs: element name = “Name” type = “xs: string” />

<xs: element name = “Address” type = “xs: string” />

<xs: element name = “StarredIn” minOccurs = “0”” maxOccurs = “17>
<xs: complexType>

. <xs: attribute name = “title” type = “xs: string” />

<xs: attribute name = “year” type = “xs: integer” />

</xs: complexType>

</xs: element>
</Xxs: sequence>
</xs: complexType>

Yangjun Chen ACS-4902

<xs: keyref name = “movieRef” refers = “movieKey”>
. <xs: selector xpath = “Star/StarredIn” />
<xs: field xpath = “@title” />
<xs: field xpath = “@year” />
</xs: keyref>
'</xs: element> ,
</xs: schema> <? Xml version = “1 0” encoding = “utf-8” standalone =
‘CyeSQ) ?> i
<Stars>
<Star> |

<Name>Mark Ham|II</Name>
<Address>456 Oak Rd. Brentvvood</Address>

<StarredIn title = “star war” year =“1977"/>
</Star>

</Stars>

Jan. 2025 Yangjun Chen ACS-4902

About usage of XML schema

<?xml version="1.0"?>

<note xmins: xsi = "http://www.w3.0rg/2001/XMLSchema-instance"
xsl: schemalocation = "https://www.w3schools.com/xml note.xsd">

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>
</note>

Jan. 2025 Yangjun Chen ACS-4902

The following example is an XML Schema file called
"note.xsd" that defines the elements of the above XML
document ("note.xml"):

<?xml version="1.0"?>
<xs: schema xmlins: xs = "http://www.w3.0rg/2001/XMLSchema">
<xs: element name = "note">
<xs.complexType>
<Xxs:sequence>
<xs:element name = "to" type = "xs:string"/>
<xs.element name = "from" type = "xs:string"/>
<xs:element name = "heading" type = "xs:string"/>
<xs.element name = "body" type = "xs:string"/>
</xs:sequence>
</xs:complexType>

Jan. 2025 Yangjun Chen ACS-4902

Programming Languages for XML

« XPath
« XQuery
 Extensible StyleSheets Language (XSLT)

Yangjun Chen ACS-4902

XPath

XPath is a simple language for describing sets of similar paths in a
graph of semistrucured data.

The XPath Data Model

Sequence of items corresponds to a set of tuples in the relational
algebra.

An item is either:

1. A value of primitive type: integer, real, boolean, or string.
2. A node (three kinds of nodes)

Jan. 2025 Yangjun Chen ACS-4902

Three kinds of nodes:

(a) Documents. These are files containing an XML document,
perhaps denoted by their local path name or URL.

(b) Elements. These are XML elements, including their opening
tags, their matching closing tags if there is one, and everything
In between (i.e., below them in the tree of semistructured data
that an XML document represents).

(c) Attributes. These are found inside opening tags.

The items 1n a sequence needn’t be all of the same type although
often they will be.

Jan. 2025 Yangjun Chen ACS-4902

A sequence of five items:

10

“ten”

10.0

<Number base = “8">
<Digit>1</Digit>
<Digit>2</Digit>

</Number>

@val="“10"

Jan. 2025 Yangjun Chen

Document Nodes

It is common to apply XPath to documents that are files. WWe can
make a document node from a file by applying the function:

doc(file name

The named file should be an XML document. We can name a file
either by giving its local name or a URL if it is remote.

doc(“movie.xml”)

doc(“/usr/slly/data/movies.xml”)
doc(“infolab.stanford.edu/~hector/movies.xml’")

Jan. 2025 Yangjun Chen ACS-4902

Path Expressions

An XPath expression starts at the root of a document and gives a
sequence of tags and slashes (/).

doc(file name)/T,/T,/.../T,

doc()/StarMoviedata/Star/Name

Evaluation of XPath expressions:

1. Start with a sequence of items consisting of one node: the

document node.

Then, process each of T, T,, ..., T, In turn.

3. To process T;, consider the sequence of items that results from
processing the previous tag, iIf any. Examine those items, in

N

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>
<StarMovieData>

<Star starlD = “ " starredIn = “sw">
<Name>Carrie Fishes</Name>
<Address>
. <Street>123 Maple St.</Street><City>Hollywood</City>
</Address>
<Address>
. <Street>5 Locust Ln.</Street><City>Malibu</City>
. '<Address>
</Star>
<Star starlD =" " starredIn = “sw™>
<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>
<City>Brentwood</City>
</Star>
.<Movie movielD =* " starOf = “cf mh”>
. <Title>Star Wars</title><Year>1977</Year>
'</Movie>

| “movie.xml”
U S

Jan. 2025 Yangjun Chen ACS-4902

In the following discussion, the document node is not

Included in an XPath for simplicity.

/StarMoviedata/Star/Name

<? Xml version =“1.0" ... ?>
r <StarMovieData>
~— <Star starID =“ 7 starredln = “sw’>
{ <Name>Carrie Fishes</Name>
< </Star>
< <Star starlD =“ ” starredIn = “sw”>
{ <Name>Mark Hamill</Name>
<Name>Carrie Fisher</Name> >~ </Star>
<Name>Mark Hamill</Name> <Movie>
</Movie>
. </StarMovieData>

Jan. 2025 Yangjun Chen ACS-4902

Relative Path Expressions

In several contexts, we shall use XPath expressions that are relative
to the current node or sequence of nodes.

Jessessmensseataaatos a current node
<xs: complexTyp> ¢
<Xs: sequence> /StarMovieData/Movies

<xs: element name = “Movie” type = “movieType”>
minOccurs = “0” maxOcurs = “unbouned” />
</xs: sequence>
</xs: complexTyp>
<xs: key name = “movieKey”>)
<xs: selector xpath = “Movie” /> +===- a relative path, equal to
<xs: field xpath = “@Title” />
<xs: field xpath = “@Year” />
</xs: key>

Jan. 2025 Yangjun Chen ACS-4902

Attribute in Path Expressions

 Path expressions allow us to find all the elements within a
document that are reached from the root along a particular path.

ITT,/../T,

« \We can also end a path by an attribute name preceded by an

IT T,/ /TI@A

Jan. 2025 Yangjun Chen ACS-4902

JARGR

So far, we have only navigated though semistructured-data graphs in
two ways: from a node to its children or to an attribute. In fact,
XPath provides several axes to navigate a graph in different ways.
Two of these axes are (the default axis) and , for which
@ is really a shorthand.

Axes used in Xpath expressions:

Self /self:: /next-sibling::
Parent Iparent:: [following::
descendant /descendant:: /preceding::
Ancestor Jancestor:: /child::
Next-sibling [attribute::

Jan. 2025 Yangjun Chen ACS-4902

Selects the current node

parent Selects the parent of the current node

descendant Selects all descendants (children, grandchildren, etc.)
of the current node

ancestor Selects all ancestors (parent, grandparent, etc.) of the
current node

next-sibling Select the next sibling

following Selects everything in the document after the closing tag
of the current node

preceding Selects all nodes that appear before the current node In
the document, except ancestors, attribute nodes and
namespace nodes

child Selects all children of the current node
attribute Selects all attributes of the current node

Jan. 2025 Yangjun Chen ACS-4902

« All the children of the current node are referred to
as siblings.

« All those nodes visited after the current node during
a DFS search are referred as the following nodes.

* All those nodes visited before the current node

during a DFS search are referred as the preceding
nodes.

Jan. 2025 Yangjun Chen ACS-4902

Abbreviated axes

/ - stands for . - stands for
@ — stands for .. — Stands for
/] - stands for

/child::StarMovieData/descentend::Star/attribute::starlD

I

/StarMovieData//Star/@starlD

/descendant::City

/StarMovieData//Star//City

Jan. 2025 Yangjun Chen

Context of Expression

* By “context”, we mean an element in a document,
working as a reference point (current node).

« So It makes sense to apply axes like :
, or to a current node.

Jan. 2025 Yangjun Chen ACS-4902

Two functions: text(), node()

Jan. 2025

/child::text() — select all those children of the current
node, which are text nodes

/child::node() — select all the children of the current
node, whatever their node type

/self::node() — select the current node

/StarMovieData//Star/self::node()

!

Yangjun Chen ACS-4902

Conditions in Path Expressions

As we evaluate a path expression, we can restrict ourselves to follow
only a subset of the paths whose tags match the tags in the
expression. To do so, we follow a tag by a condition, surrounded by
square brackets. Such a condition can be anything that has a boolean
value. Values can be compared by comparison operators: =, >=, 1=
A compound condition can be constructed by connecting
comparisons with logic operations: v, A.

e StarMovieData

<Name>Carrie Fisher</Name>

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>
<StarMovieData>

<Star starlD = “ " starredIn = “sw">
<Name>Carrie Fishes</Name>
<Address>
. <Street>123 Maple St.</Street><City>Hollywood</City>
</Address>
<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

| '<Address> <Name>Carrie Fisher</Name>
</Star>

<Star starlD =" " starredIn = “sw™>
<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>
<City>Brentwood</City>

</Star>

.<Movie movielD =* " starOf = “cf mh”>

. <Title>Star Wars</title><Year>1977</Year>

'</Movie>

Jan. 2025 Yangjun Chen ACS-4902

StarMovieData

starMovieData

@]
Star l ______
CI'[y / \ movie
‘ \\I\\Iame |
~ S city year
“Malibu” ’ ’ ‘ street title
I Carrie Mark Oak B'wood Star War 1977

Fisher Hamill

street city

Jan. 2025 Yangjun Chen ACS-4902

Conditions in Path Expressions

As we evaluate a path expression, we can restrict ourselves to follow
only a subset of the paths whose tags match the tags in the
expression. To do so, we follow a tag by a condition, surrounded by
square brackets. Such a condition can be anything that has a boolean
value. Values can be compared by comparison operators: =, >=, 1=
A compound condition can be constructed by connecting
comparisons with operations: v, A.

StarMovieData

/StarMovieData/Star[.//City = “Malibu”]/Name

Jan. 2025 Yangjun Chen ACS-4902

StarMovieData

starMovieData

e
! Star
City \ ~~~~~ movie
o - e ___
‘ >~ Name - |
S~ i city year
. ~~_ aadr. c
“Malibu” o ‘ street title
Tl Carrie Mark Oak B'wood Star War 1977

Fisher Hamill

city

street ’ ?

Maple H'wood Locust Malibu

Jan. 2025 Yangjun Chen ACS-4902

StarMovieData

starMovieData

)
Star
© -

City \ __________ movie

o - e_____

T Name T

‘ S~ adr & addr < nameaz=-" city year

- ~~__addr. _ = :
“Malibu” ~ ‘ street title

Carrie Mark Oak B’'wood Star War 1977
Fisher Hamill

city

street ’ ?

Maple H'wood Locust Malibu

Jan. 2025 Yangjun Chen ACS-4902

Conditions in Path Expressions

Several other useful forms of condition are:

» An integer [i] by itself is true only when applied the ith child of its

parent. /StarMovieData/Stars/Star[2]

« Atag [T] by itself is true only for elements that have one or more
subelements with tag T.

/StarMovieData/Stars/Star[Address]

« An attribute [A] by itself is true only for elements that have an
attribute A.

/StarMovieData/Stars/Star[@starti D]

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>
<Movies>
<Movie title = “King Kong” >
. <Version year = “1933"> /Movies/Movie/Version[1]/@year
. <Star>Fay Wray</Star>
</Version>
<Version year = “1976">
<Star>Jeff Bridegs</Star>
<Star>Jessica Lange</Star>
. </Version>
</Movie>
<Movie title = “Footloose™
<Version year = "1984">
<Star>Kevin Bacon</Star>
<Star>John Lithgow</Star>
S IR LI IR LIz iel /Movies/Movie/Version[Star] ?
</Version>

/Movies/Movie/\ersion/Star?

Jan. 2025 Yangjun Chen ACS-4902

Wildcards

In an XPath expression, we can use * to say “any tag”. Likewise,
(@* says “‘any attribute.”

/StarMovieData/*/@%*

29 ¢¢ 29 ¢¢

Results: “ct”, “sw”, “mh™, “sw”, “sw”’, “ctf mh”

<StarMovieData>
<Star starlD = “cf’ starredIn = “sw”>

<Star starlD = “mh” starredin = “sw’>

<Movie movielD = “sw” starOf = “cf mh”>

</Movie>

> AN § </StarMovieData>

Jan. 2025 Yangjun Chen ACS-4902

The XPath expressions are mainly used in HTML,
XQuery and XSLT languages.

Example:

{doc(starMovie.xml)/StarMovieData/*/@*}

 l

Cf

Sw
Mh
Sw

Jan. 2025 Yangjun Chen ACS-4902

XQuery

« XQuery is an extension of XPath that has become a
standard for high-level querying of databases containing
XML data.

« XQuery is designed to take data from multiple
databases, from XML files, from remote Web
documents, even from CGI (common gate interface)
scripts, and to produce XML results that you can
process with XSLT.

Jan. 2025

Yangjun Chen ACS-4902

XQuery Basics

All values produced by XQuery expressions are sequences
of items.
ltems:

primitive values

nodes: document, element, attribute nodes

XQuery is a functional language, which implies that any
XQuery expression can be used in any place that an

Jan. 2025 Yangjun Chen ACS-4902

FLWR Expressions

FLWR (pronounced “flower”) expressions are in some sense
analogous to SQL select-from-where expressions.

An XQuery expression may involve clauses of four types, called
for-, let-, where-, and return-clauses (FLWR).

1. The query begins with zero or more for- and let-clauses. There
can be more than one of each kind, and they can be interlaced
In any order, e.g., for, for, let, for, let.

2. Then comes an optional where-clause.

3. Finally, there is exactly one return-clause.

Return <Greeting>“Hello World”</Greeting>

Jan. 2025 Yangjun Chen ACS-4902

Let Clause

let variable := expression

 The intent of this clause is that the expression is evaluated and assigned to
the variable for the remainder of the FLWR expression.
 Variables in XQuery must begin with a dollar-sign.
» More generally, a comma-separated list of assignments to variables can appear.

let $stars := doc(““stars.xml”) let $movies ;= doc(“movies.xml”)
$stars := doc(“stars.xml’)

for Clause

for variable in expression

Jan. 2025 Yangjun Chen ACS-4902

Stars.xml

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” 7>
<Stars>
<Star>
. <Name>Carrie Fisher</Name>
<Address>
<Street>123 Maples St.</street>
<City>Hollywood</City>
</Address>
<Address>
<Street>5 Locust Ave.</Street>
<City>Malibu</City>
. </Address>
</Star>

... more stars

Jan. 2025 Yangjun Chen ACS-4902

Movies.xml

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>
<Movies>
<Movie title = “King Kong”>
. <Version year = “1993">
, <Star>Fay Wray</Star>
</Version>
<Version year = “1976">
<Star>Jeff Brideges</Star>
<Star>Jessica Lange</Star>
. klversion>
</Movie>
<Movie title = “Footloose™>
<Version year = “1984">
| <Star>Kevin Bacon</Star>
<Star>John Lithgow</Star>
<Star>Sarah Jessica Parkr</Star>

Jan. 2025 Yangjun Chen ACS-4902

Where Clause

where $s/Address/Street = “123 Maple St.” and
$s/Address/City = “Malibu”

where condition

This clause is applied to an item, and the condition, which is an expression,
evaluates to true or false.

return Clause

return expression

This clause returns the values obtained by evaluating

let $movies := doc(“movies.xml”) <Star>Fay Wray</Star>
for $m in $movies/Movies/Movie <Star>Jeff Brideges</Star>

: <Star>Jessica Lange</Star>
return $m/Version/Star <Star>Kevin Bacon</Star>

Jan. 2025 Yangjun Chen ACS-4902

let $movies := doc(“movies.xml’)
for $m in $movies/Movies/Movie
return $m/\Version/Star

<Star>Fay Wray</Star>

<Star>Jeff Brideges</Star>
<Star>Jessica Lange</Star>
<Star>Kevin Bacon</Star>
<Star>John Lithgow</Star>
<Star>Sarah Jessica Parker</Star>

B AN {

Jan. 2025

A

<? Xml version = “1.0” encoding = “utf-8” ... 7>
<Movies>
<Movie title = “King Kong”>
<Version year = “1993">
<Star>Fay Wray</Star>
</Version>
<Version year = “1976">
<Star>Jeff Brideges</Star>
<Star>Jessica Lange</Star>
</version>
</Movie>
<Movie title = “Footloose™>
<Version year = “1984">
<Star>Kevin Bacon</Star>
<Star>John Lithgow</Star>
<Star>Sarah Jessica Parkr</Star>
</Version>
</Movie>
</Movies>

Yangjun Chen ACS-4902

Replacement of variables by their Values

let $movies := doc(“movies.xml”)
for $m in $movies/Movies/Movie

-
-
-
-
-
-
-

-
-
-
-
-
-
-

-
¢ ==
-

<Movie title = $m/@title>$m/Version/Star</Movie>
<Movie title = $m/@title>$m/\Version/Star</Movie>
<Movie title = $m/@title>$m/\Version/Star</Movie>

Jan. 2025 Yangjun Chen ACS-4902

let $movies := doc(“movies.xml”)
for $m in $movies/Movies/Movie
return <Movie title = {$m/@title}>{$m/\Version/Star}</Movie>

<Movie title = “King Kong”"><Star>Fay Wray</Star></Movie>

<Movie title = “King Kong’><Star>Jeff Brideges</Star></Movie>
<Movie title = “King Kong"><Star>Jessica Lange</Star></Movie>
<Movie title = “Footloose”><Star>Kevin Bacon</Star></Movie>

<Movie title = “Footloose”><Star>John Lithgow</Star></Movie>

<Movie title = “Footloose”><Star>Sarah Jessica Parker</Star></Movie>

Jan. 2025 Yangjun Chen ACS-4902

Joins in XQuery

We can join two or more documents in XQuery in much the same
way as In SQL. In each case, we need variables, each of which

ranges over elements of one of the documents or tuples of one of
the relations, respectively.

1. In SQL, we use a from-clause to introduce the needed tuple
variables

2. In XQuery, we use a for-clause.

let $movies := doc(“movies.xml”)
$stars := doc(“stars.xml”)
for $s1 in $movies/Movies/Movie/Version/Star
$s2 in $Stars/Stars/Star Select ssn. Iname, Dname

WIEIEREIEICSORIEEICEZINEWD] From employees s1, departments s2
pr - return $s2/Address/City Where s1.dno = s2. Dnumber

Jan. 2025 Yangjun Chen

ACS-4902

let $movies ;= doc(“movies.xml”)
$stars := doc(“stars.xml’)

for $sl1 in $movies/Movies/Movie/\Version/Star
$s2 in $Stars/Stars/Star

<? Xml version = “1.0" ?>
<Movies> where data($s1) = data($s2/Name)
<Movie title = “King Kong”> return $s2/Address/City
<Star>Fay Wray</Star> <2 Xml version = “1.0” encoding = “utf-8” ... ?>
</Version> <Stars> ..
<Version year = “1976"> <Star> -
<Star>Jeff Brideges</Star> <Name>Fay Wray</Name>
<Star>Jessica Lange</Star> <Address>
</version> <Street>123 Maples St.</street>
</Movie> <City>Hollywood</City>
<Movie title = “Footloose”> </Address>
<Version year = “1984"> <Address>
<Star>Kevin Bacon</Star> <Street>5 Locust Ln.</Street>
<Star>John Lithgow</Star> <City>Mallibu</City>
<Star>Sarah Jessica Parkr</Star> </Address>
</Version> </Star>
</Movie> ... more stars
</Movies> </Stars>

Jan. 2025 Yangjun Chen ACS-4902

XQuery Comparison Operators

The following FLWR seems correct. But it does not work.
<? Xml version = “1.0” encoding = “utf-8” ...

let S$stars := doc(“stars.xml’) N

for $sin $stars/Stars/Star

where $s/Address/Street = “123 Maple S

and $s/Address/City = “Malibu”
return $s/Name

Correct query:
let S$stars := doc(“stars.xml’)
for $s in $stars/Stars/Star,
$s1 in $s/Address
where $s1/Street = “123 Maple St.” and
$s1//City = “Malibu”

~ return $s/Name —

Jan. 2025 Yangjun Chen

<Stars>

<Star>
<Name>Fay Wray</Name>

<Address>
<Street>123 Maples St.</street>

<City>Hollywood</City>
</Address>

<Address>
<Street>5 Locust Ave.</Street>

<City>Mallibu</City>
</Address>

</Star>
... more stars

</Stars>

ACS-4902

Elimination of Duplicates

XQuery allows us to eliminate duplicates in sequences of any kind,
by applying the built-in distinct values.

Example. The result obtained by executing the following first query
may contain duplicates. But the second not.

let $starsSeq := (let $starsSeq := (
let $movies := doc(“movies.xml”) let $movies := doc(“movies.xml”)
for $m in $movies/Movies/Movie for $m in $movies/Movies/Movie
return $m/Version/Star return $m/Version/Star

))

return <Stars>{$starSeq}</Stars> -~ return <Stars>{$starSeq}</Stars>

Select average(distinct salary) from employee;

Jan. 2025 Yangjun Chen ACS-4902

Quantification in XQuery

There are expressions that say, in effect, , and

every variable in expressionl satisfies expression2

some variable in expressionl satisfies expression2

let S$stars := doc(“stars.xml”) ~let S$stars := doc(“stars.xml”)

for $s in $stars/Stars/Star ~ for $sin $stars/Stars/Star

where every $c in $s/Address/City © where 3$c in $s/Address/City satisfies
satisfies $¢ = “Hollywood” $¢ = “Hollywood”

return $s/Name ™. ~ return $s/Name .

Find the stars who have houses only in Find the stars with a home in Hollywood.
Hollywood. ~ (Key word is not used.

Jan. 2025 Yangjun Chen ACS-4902

Select ssn, fname, salary from employee where salary

> all (select salary from employee where dno = 4);

Select fname, Iname
from employee
where
exists (select *
from dependent
where essn = ssn);

' < i T = v_

Jan. 2025 Yangjun Chen ACS-4902

Aggregation

XQuery provides built-in functions to compute the usual
aggregations such as count, average, sum, min, or max. They take
any sequence as argument. That is, they can be applied to the result

of any XPath expression.
Select s.ssn, s.Iname, count(r.Iname)

from employee s, employee r

let $movies := doc(“movies.xml”)
for $m in $movies/Movies/Movie where s.ssn = r.superssn
where >1

return $m group by s.ssn, s.lname;

having count(s.name) < 3;

Find the movies with multiple versions.

' A 8 . g vv-

Jan. 2025 Yangjun Chen ACS-4902

Branching in XQuery Expressions

There Is an

let
for

return

expression in Xquery of the form:

If (expressionl) then (expression?2)

$kk = doc(“movies.xml”’)/Movies/Movie/Movie[@title = “King Kong™]
$v in $kk/Version

if (Sv/@year = max($kk/Version/@year)) iisy

then <Latest>{$v}</Latest>
else <Old>{$v}</Old>

Tag the version of King Kong.

B

——

Jan. 2025

. 7 " 5

Yangjun Chen

<? Xml version =“1.0" ?>

<Movie title = “King Kong”>
<Version year = “1993">
<Star>Fay Wray</Star>
</Version>
<Version year = “1976">
<Star>Jeff Brideges</Star>
<Star>Jessica Lange</Star>
</version>
</Movie>
<Movie title = “Footloose”>
<Version year = “1984”>
<Star>Kevin Bacon</Star>
<Star>John Lithgow</Star>
<Star>Sarah Jessica Parkr</Star>
</Version>
</Movie>
</Movies>

ACS-4902

Movies.xml

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>
. <Movie title = “King Kong”> Let $kk :=
. <Version year = “1993"> doc(“movies.xml”’)/Movies/Movie/Movie
: <Star>Fay Wray</Star> [@title = “King Kong”]
</Version> For $v in $kk/Version
<Version year = “1976"> Return if ($v/@year =
<Star>Jeff Brideges</Star> max($kk/\Version/@year))
| solEedEsein LaEesisEr> then <Latest>{$v}</Latest>
i pversion> else <Old>{$v}</Old>
<Movie title = “Footloose”>
. <Version year = “1984"> @
' <Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>
<Star>Sarah Jessica Parkr</Star>

. </Version> .
. </Movie> <Latest><Version year = “1993”> ... </Latest>
. </Movies> - S <Old><Version year = “1976”> ... </Old>

Jan. 2025 Yangjun Chen ACS-4902 w

Ordering the Result of a Query

It is possible to sort the result as part of a FLWR query

order list of expressions

, o . Select *
let $movies := doc(“movies.xml’)

for $m in $movies/Movies/Movie,
$v in $m/Version

order $v/@year

return <Movie title = “{$m/@title}” year = “{$v/@year}” />

w®
S

From employees
order by ssn

Construct the sequence of pairs, ordered by

Jan. 2025 Yangjun Chen ACS-4902

Movies.xml

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

. <Movie title = “King Kong"> let
<Version year = “1993">

$movies := doc(“movies.xml”)
for $m in $movies/Movies/Movie,

$v in $m/\Version

. <Star>Fay Wray</Star>
</Version> order $v/@year
<Version year = “1976”> return <Movie title = “{$Sm/@title}”
. <Star>Jeff Brideges</Star> year = “{$v/@year}” />
§ <Star>Jessica Lange</Star>
. <lversion> ‘
</Movie>
~<Movie title = “Footloose’> <Movie title = “King Kong” year = “1976” />
S el = S <Movie title = “Footloose” year = “1984” />

<Star>Kevin Bacon</Star>
<Star>John Lithgow</Star>
. <Star>Sarah Jessica Parkr</Star>
. '</Version>
</Movie>

0)V}

Jan. 2025 Yangjun Chen ACS-4902

let $movies := doc(“movies.xml”)
for $m in $movies/Movies/Movie,
$v in $m/Version
order $m/@title, $v/@year
return <Movie title = “{$m/@title}” year = “{$v/@year}” />

U

<Movie title = “Footloose” year = “1984” />
<Movie title = “King Kong” year = “1976” />
<Movie title = “King Kong” year = “1993” />

Jan. 2025 Yangjun Chen ACS-4902

About usage of XQuery

An XQuery expression can be embedded in an
HTML file.

{

for $x in doc("books.xml")/bookstore/book/title
order by $x
return {$x}

}

Jan. 2025 Yangjun Chen ACS-4902

Extensible Stylesheet Language

XSLT (Extensible Stylesheet Language for Transformation) is a

standard of the World-Wide-Web Consortium.

- Its original purpose was to allow XML documents to be
transformed into HTML or similar forms that allowed the

document to be viewed or printed.
- In practice, XSLT is another query language for XML to extract
data from documents or turn one document form into another

form.

XSLT Basics

Like XML schema, XSLT specifications are XML documents,
called stylsheet. The tag used in XSLT are found in a name-space:

L N e

Jan. 2025 Yangjun Chen ACS-4902

At the highest level, a stylesheet looks like:

<? Xml version = ‘1.0” encoding = “utf-8" ?>
<xsl:stylesheet xmins:xsl =
http://www.w3.0rg/1999/XSL/Transform

</xsl:stylesheet>

Templates

A stylesheet will have one or more templates. To apply a stylesheet
to an XML document, we go down the list of templates until we
find one that matches the root.

<xsl:template match = “XPath expression™

e A0 O =y @ S =

Jan. 2025 Yangjun Chen ACS-4902

Templates

<xsl:template match = “XPath expression™

XPath expression can be either rooted (beginning with a slash)
or relative. It describes the elements of XML documents to which
this template is applied.

— the template is applied to every element of the
document that matches the path (absolute path).

— part of an Xpath, evaluated relative to a
reference point (the current node).

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8" 7>
<xsl:stylesheet xmins:xs| =
http://www.w3.0rg/1999/XSL/Transform>
<xsl:template match = “/">
<HTML>
<BODY>

This is a document
</BODY>
</HTML>
</xsl:template >
</xsl:stylesheet>

Applying the template, an XML document is transformed to a HTML file:

<HTML>
<BODY>

This is a document
</BODY>
> g </HTML>

Jan. 2025 Yangjun Chen ACS-4902

Obtaining Values from XML Data

<xsl:value-of select = “expression” />
<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>
~Movie title = "King Kong™> <? Xml version = “1.0” encoding = “utf-8” ?>
<Version year = "1993"> <xsl:stylesheet xmlns:xs| =
. <Star>Fay Wray</Star> http://www.w3.0rg/1999/XSL/Transform>
:</Ver3|on> <xsl:template match = “/Movies/Movie”>
<Version year ="1976"> <xsl:value-of select = “@title” />
<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star </xsl:template >
<version year = “2005" /> </xsl:stylesheet>
</Movie>

<Movie title = “Footloose”> Ve 2

' <Version year = “1984"> King Kong
<Star>Kevin Bacon</Star> “Footloose”
<Star>John Lithgow</Star>
<Star>Sarah Jessica Parkr</Star>

- </Version>

'</Movie>~ W T T

</Movies>
Jan. 2025 Yangjun Chen ACS-4902

Recursive Use of Templates

Powerful transformations require recursive application
of templates at various elements of the input.

<xsl:apply-template select = “expression” />

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8”
<? Xml version = “1.0” encoding = “utf-8” 7> standalone = “yes” ?>
<xsl:stylesheet xmins:xsl <Movies>
<Movie title = “King Kong”>
<Version year = “1993">

>

<xsl:template match = “/Movies™>

<Movies> <$tar> Fay Wray</Star>
<xsl:apply-templates /> </Version>
</Movies> <Version year = “1976">
</xsl:template > ; <Star>Jeff Brideges</Star>
/ <Star>Jessica Lange</Star>
<xsl:template match = “Movie™ </version>
<Movie title = “<xsl:value-of select = “@title” / </Movie>
<xsl:apply-templates />
</Movie> ;

<Movie title = “Footloose”>
</xsl:template> / <Version year = “1984”>

: <Star>Kevin Bacon</Star>

E

<xsl:template match = “Version”>
<xsl:apply-template />

\ <Star>John Lithgow</Star>
</xsl:template> <Star>Sarah Jessica Parkr
<xsl:template match = “Star’> </Star>

<Star name = “<xsl:value-of select = “.” />”/> </Version>
</xsl:template> </Movie>
ﬁe-}:stylesheeb N g o =

</Movies>

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0” encoding = “utf-8
standalone = “yes” 7>
<Movies>
<Movie title = “King Kong”> <? Xml version = “1.0” encoding = “utf-8”
<Version year = “1993"> standalone = “yes” 7>
<Star>Fay Wray</Star> <Movies>
</Version> <Movie title = “King Kong”>
<Version year = “1976”> <Star name = “Fay Wray” />
<Star>Jeff Brideges</Star> <Star name = “Jeff Brideges” />
<Star>Jessica Lange</Star> <Star name = “Jessica Lange” />

</version> </Movie>
</Movie> <Movie title = “Footloose”>

<Movie title = “Footloose”> <Star name = “Kevin Bacon” />
<Version year = “1984"> <Star name = “John Lithgow” />
<Star>Kevin Bacon</Star> <Star name = “Sarah Jessica Parkr” />

<Star>John Lithgow</Star> </Movie>
<Star>Sarah Jessica </Movies>
Parkr</Star>
</Version>
</Movie>

</Movies> " . =
Jan. 2025 Yangjun Chen ACS-4902

Iteration in XSLT

We can put a loop within a template that gives us freedom
over the order in which we visit certain subelements of
the element to which the template Is being applied.

<xsl:for-each select = “expression” >
The expression iIs an XPath expression whose value is a

sequence of items. Whatever Is between the opening
<for-each> tag and its matching closing tag is executed

Jan. 2025 Yangjun Chen ACS-4902

<? Xml version = “1.0" encoding = “utf-8” standalone = “yes” 7>

<Stars> <? Xml version = “1.0” encoding = “utf-8” ?>
<Star> <xsl:stylesheet xmIns:xs| =
<Name>Carrie Fisher</Name> http://www.w3.0rg/1999/XSL/Transform >
T <xs|:toe[nplate match = “/">
[< >
<Street>123 Maples St.</stree <xsl:for-each select = “Stars/Star” >
. <City>Hollywood</City>
</Address> <xsl:value-of select = “Name”>
<Address>
. <Street>5 Locust Ln.</Street> _ /O<If>;s<lgo/r>-each>
. <City>Mallibu</City>
. </Address> <xsl:for-each select =
</Star> . “Stars/Star/Address”>
.. more stars I(\:AZ'EGHZ;?ES |
</Stars> ' <xsl:value-of select = “City">
...... Lo
1. Hollywood </xsl:for-each>
2. Malibu </0L>
------ </xsl:template >
_ ‘ > ha * </xsl:stylesheet>

Jan. 2025 Yangjun Chen ACS-4902

<0L>
<LI|>
Carrie Fishe

<LI|>
Mark Hamil

... more stars

<Stars>
<Star>
<Name>Carrie Fisher</Name>
<Address>
<Street>123 Maples
St.</street>
<City>Hollywood</City>
</Address>
<Address>
<Street>5 Locust Ln.</Street> QYR aibe
<City>Mallibu</City> oL>
</Address> <L[>

</Star> Hollywood
... more stars

Malibu

... more cities

</Stars>

Carrie Fishes
Mark Hamill

Hollywood </0L>

Malibu

Jan. 2025

i

Yangjun Chen

</xsl:stylesheet>

<? Xml version = “1.0” encoding = “utf-8” 7>

<xsl:stylesheet xmIns:xsl =

http://www.w3.0rg/1999/XSL/Transform>
<xsl:template match = “/">
<0L>
<xsl:for-each select =
“Stars/Star” >
<L[>
<xsl:value-of select =
“Name”>

</xsl:for-each>
</0L><P/>
<0L>
<xsl:for-each select =
“Stars/Star/Address”>

<xsl:value-of select =
“City”>

</xsl:for-each>
</0L>
</xsl:template >

ACS-4902

Conditions in XSLT
We can introduce branching into our templates by using an if tag.

<xsl:if test = “boolean expression” >
Whatever appears between its tag and its matched closing tag is
executed If and only if the boolean expression is true.

<? Xml version = “1.0” encoding = “utf-8" 7>
<xsl:stylesheet xmIns:xsl =
http://www.w3.0rg/1999/XSL/Transform>
<xsl:template match = “/">
<TABLE border = “5"><TR><TH>Stars</TH><TR>
<xsl:for-each select = “Stars/Star” >
<xsl:if test = “Address/City = ‘Hollywood™>

<TR><TD><xsl:value-of select = “Name”</TD>
</TR>
</xsl:if>
</xsl:for-each>
</TABLE>
</xsl:template >
</xsl:stylesheet>

Jan. 2025 Yangjun Chen ACS-4902

<TABLE border = “5°><TR><TH>Stars</TH><TR>
<TR>

<TD> List all t

Carrie Fishes who ha

</TD> In Holly
</TR>
<TR>

</TABLE>

N

Jan. 2025 Yangjun Chen ACS-4902

<htmlI>
<body>
<table border="1">

<tr>

<th>Month</th>

<th>Savings</th>
</tr>

<{r>
<td>January</td>
<td>$100</td>
<[tr>
</table>

</body>

</html>

Jan. 2025 Yangjun Chen

ACS-4902

How to use XSTL to make document transformation

In this example, creating the XML file that contains the information
about three students and displaying the XML file using XSLT.

<>xml VISFETE- "1.0" ENSNEIFER- "UTF-8"?>
<?xml-stylesheet /xsl "[IE3d- “transform.xsl" ?>
<Student>

<S>

<name> David John Agarwal</name><branch> CSE</branch>

<age> 23</age><city> Manibu</city>

</s> students.xml|
<S$>

<name> Mary Chen</name><branch> CSE</branch>

<age> 17</age><city> New York</city>

</s>

<s>
<name> Christ Henry</name><branch> IT</branch>
<age> 25</age> <city> Washington</city>

</student>

Jan. 2025 Yangjun Chen ACS-4902

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmins:xs|="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">

<html|> <body>

<hl align="center">Students' Basic Details</h1>

<table border="3" align="center" > transform.xsl

<tr>
<th>Name</th>
<th>Branch</th>
<th>Age</th>
<th>City</th>

<[tr>

<xsl:for-each select="student/s">

<tr>

<td><xsl.value-of select="name"/></td>
<td><xsl.value-of select="branch"/></td>
<td><xsl.value-of select="age"/></td>
<td><xsl.value-of select="city"/></td>

</table> </body>
Jan. 2025 Yangjun Chen ACS-4902

David John CSE 23 Malibu

Mary Chen CSE 21 New York

Christ CSE 22 Washington
Henry

Jan. 2025 Yangjun Chen ACS-4902

How to use XSTL to make document transformation?

import javax.xml.transform.Transformer; _
import javax.xml.transform.TransformerFactory; GrlJEfVa)
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

public class Main {
public static void main(String args[]) throws Exception {

StreamSource source = new StreamSource(args[9]);
StreamSource stylesource = new StreamSource(args[1]);

TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformer = factory.newTransformer(stylesource);

StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Jan. 2025 Yangjun Chen ACS-4902

How to use XSTL to make document transformation?

Xsl|Transform xslTran = new XslTransform();

xs|Tran.Load("transform.xsl"); ~=—==""""- an XSTL sheet

XmlTextWriter writer = new XmiTextWriter("xslt_output.html",

SYSICIHRIDAA = eele s e RUAN) M Create a file to store the output

xslTran.Transform(students.xml, null, writer);
*

a file containing an XML document to be transformed

Jan. 2025 Yangjun Chen ACS-4902

The Architecture of a Search Engine

Jan. 2025

user
Ranked
query pages
Crawler Query | Ranker
f Engine
Page » |Indexer > Indexes
Repository |«

Yangjun Chen

ACS-4902

The Architecture of a Search Engine

There are two main functions that a search engine must perform.

1. The Web must be crawled. That is, copies of many of the pages
on the Web must be brought to the search engine and processed.

2. Queries must be answered, based on the material gathered from
the Web. Usually, a query is in the form of a word or words that
the desired Web pages should contain, and the answer to a
query Is a ranked list of the pages that contain all those words,
or at least some of them.

Jan. 2025

Yangjun Chen ACS-4902

The Architecture of a Search Engine

Crawler — interact with the Web and find pages, which will be
stored in Page Repository.

Query engine — takes one or more words and interacts with indexes,
to determine which pages satisfy the query.

Indexer — inverted file: for each word, there is a list of the pages that
contain the word. Additional information in the index for
the word may include its locations within the page or its
role, e.g., whether the word Is In the header.

Ranker — order the pages according to some criteria.

Jan. 2025

Yangjun Chen ACS-4902

Web Crawler

A crawler can be a single machine that is started with a set -,
containing the URL’s of one or more Web pages to crawl. There 1s

a repository - of pages, with the URL’s that have already been
crawled; initially R is empty.

Jan. 2025

Yangjun Chen ACS-4902

Web Crawler

Method: Repeatedly, the crawler does the following steps.

1. If = Is empty, end.

2. Selecta URL ' from the set S to “crawl” and delete r from .

3. Obtain a page p, using its URL . If p is already In repository
R, return to step (1) to select another URL from S.

4. If pis not already iIn
(a) Addpto
(b) Examine p for links to other pages. Insert into = the URL of
each page g that p links to, but that is not already iIn R or .

5. Gotostep (1). p:

https://www. voutube com/watch?v =EctlAlY VWwU
U A

Jan. 2025 Yangjun Chen ACS-4902

https://www.youtube.com/watch?v=EctlAlYVWwU

Web Crawler

The algorithm raises several questions.

a) How to terminate the search if we do not want to search the
entire Web?

b) How to check efficiently whether a page Is already in repository
¥

c) How to select a URL r from S to search next?

d) How to speed up the search, e.g., by exploiting parallelism?

Jan. 2025 Yangjun Chen ACS-4902

Terminating Search

The search could go on forever due to dynamically constructed
pages.

Set limitation:
« Set a limit on the number of pages to crawil.

The limit could be either on each site or on the total number of
pages.

« Set a limit on the depth of the crawl.
Initially, the pages in set S have depth 1. If the page p selected
for crawling at step (2) of the algorithm has depth i, then any
page q we add to S at step 4-(b) is given depth i + 1. Moreover,
If p has depth equal to the limit, then do not examine links out

Jan. 2025 Yangjun Chen ACS-4902

Jan. 2025 Yangjun Chen

Managing the Repository
* When we add a new URL for a page p to the set S, we should
check that it is not already there.

» \When we decide to add a new page p to R at step 4-(a) of the
algorithm, we should be sure the page is not already there.

Page signatures:

« Hash each Web page to a signature of, say, 64 bits.

« The signatures themselves are stored in a hash table T, I.e., they
are further hashed into a smaller number of buckets, say one
million buckets.

Jan. 2025 Yangjun Chen ACS-4902

Page signatures:

« Hash each Web page to a signature of, say, 64 bits.

« The signatures themselves are stored in a hash table T, i.e., they
are further hashed into a smaller number of buckets, say one
million buckets.

« When inserting p into R, compute the 64-bit signature h(p), and
see whether h(p) is already in the hash table T. If so, do not store
p; otherwise, store p in T.

Hashing,(111101001100) = addr.

Pages: Signatures: Hash table:

- - 1111 0100 1100

Jan. 2025 Yangjun Chen ACS-4902

Selecting the next URL from S

« Completely random choice of next page.

« Maintain S as a queue. Thus, do a breadth-first search of the \Web
from the starting point or points with which we initialized S. Since
we presumably start the search from places in the Web that have
“important” pages, we are assured of visiting preferentially those
portions of the \Web.

 Estimate the importance of page links in S, and to favor those pages
we estimate to be the most important.
- PageRank

Jan. 2025 Yangjun Chen ACS-4902

Jan. 2025

Yangjun Chen

Speeding up the Crawl

« More than one crawling machine
» More crawling processes in a machine
« Concurrent access to S

Jan. 2025

Query Processing in Search Engine

 Search engine queries are word-oriented: a boolean combination
of words

« Answer: all pages that contain such words

« Method:

- The first step is to use the inverted index to determine those
pages that contain the words in the query.
- The second step Is to evaluate the boolean expression:

The AND of bit vectors (a bit vector represents an inverted
list) gives the pages containing both words.
The OR of bit vectors gives the pages containing one or both.

i

Jan. 2025 Yangjun Chen ACS-4902

wordl appears in document |

wordl: 10 ... 001 ... 00 « Inverted list

N word2: 10 ... 101 ... 10

10 ... 001 ... 00 «——Show all the documents
which contain wordl and word?2

word3: 10 ... 001 ... 01

N Word4: 10 ... 101 ... 11

10 ... 001 ... 01

10 ... 001 ... 00

Jan. 2025 Yangjun Chen ACS-4902

Trie-based Method for Query Processing

« Atrie Is a multiway tree, in which each path corresponds to a
string, and common prefixes in strings to common prefix paths.

 Leaf nodes include either the documents themselves, or links to
the documents containing the string that corresponds to the path.

Example:

A trie constructed for

The following strings:

sl: cfamp
s2: chp
s3: cfabm
s4: fb

Jan. 2025 Yangjun Chen ACS-4902 !“

Trie-based Method for Query Processing

 |tem sequences sorted () by appearance frequency
(af) In documents.

DoclID Items Sorted item sequence

1 f.a, ¢ m,p ¢.f,amp No. of doc. Containing w
2 a,b,cf c,f,ab af(w) = No. of doc.

3 b, f f,b

4 b, c, p c,bp

5 a,f,c,mp,e c,f,a,mp,e

View each sorted item sequence as a string

Construct a trie over them, in which each node Is associated
with a set of document IDs each containing the substring

Jan. 2025 Yangjun Chen ACS-4902

Trie-based Method for Query Processing

* View each sorted item sequence as a string and construct a trie

over them.

Header table:

items

links

CDUBCTQ)—F'O

Jan. 2025

Yangjun Chen ACS-4902

Trie-based Method for Query Processing

 Evaluation of queries

- Let Q = word; A word, ... A word, be a query
- Sort the words in Q according to the appearance

frequency:
wordi, A wordi, A ... AwWord;,

- Find a node in the trie, which is labeled with word;,

- If the path from the root to word;, contains all word. (i=1, ..., k),
return the document identifiers associated with word;,

- The check can be done by searching the path bottom-up, starting

Jan. 2025 Yangjun Chen ACS-4902

Trie-based Method for Query Processing

« Example
sorting

query:CADbAf s b ATAC

Header table:

items S

C
f
a
b
m
P

e

Jan. 2025 Yangjun Chen ACS-4902

Ranker: ranking pages

Once the set of pages that match the query is determined, these

pages are ranked, and only the highest-ranked pages are shown to
the user.

Measuring PageRank:

« The presence of all the query words

« The presence of query words in important positions in the page

» Presence of several query words near each other would be a
more favorable indication than if the words appeared in the
page, but widely separated.

« Presence of the query words in or near the In links
leading to the page in question.

Jan. 2025

Yangjun Chen ACS-4902

PageRank for Identifying Important Pages

One of the key technological advances in search iIs the PageRank
algorithm for 1dentifying the “importance” of Web pages.

The Intuition behind PageRank

When you create a page, you tend to link that page to others that you
think are important or valuable

Jan. 2025 Yangjun Chen ACS-4902

Recursive Formulation of PageRank

The Web navigation can be modeled as random walker move. So
we will maintain a transition matrix to represent links.

 Number the pages 1, 2, ..., n
» The transition matrix M has entries m;; in row 1 and column J,

where:
1. m; = 1rif page j has a link to page I, and there are a total

r > 1 pages that j links to. . .

2. m; = 0 otherwise.

- If every page has at least one link out, then M is
elements are nonnegative, and its columns each sum to exactly 1.
- If there are pages with no links out, then the column for that page

um to le

Jan. 2025 Yangjun Chen ACS-4902

M=| % 0 1
0 Y2 0

Lety, a, m represent the fractions of the time the random walker
spends at the three pages, respectively. We have

e N . N

y Yo Yo Oy
a|=| ¥ 0 1| a
- m > O 1/2 O - m >

It is because after a large number of moves,

Jan. 2025 Yangjun Chen ACS-4902

y Yo Y% 0|y
al=| % 0 1| a
\m/ O]/2 O \m/

y=%-y+%-a+0-m
a=%.y+0-a+1-m

m=0-y+%.a+0-m

Jan. 2025 Yangjun Chen

y=%-y+%-a+0-m P(y)=%-P{y)+%-P()+0-P(m)
a=%-y+0-a+1-m P(@)=%-P(y)+0-aP(a)+1:P(y)
m=0-y+¥%-a+0-m Pim)= 0-P(y) +%-P(a) + 0 - P(m)

P(y)=P(yly) - P(y) + P(y|a) - P(a) + P(y | m) - P(m)
P(a) =P(aly)-P(y) + P(ala)- P(a)+P(a|m)-P(m)

P(m) =P(m[y) - P(y) + P(m|a) - P(a) + P(m|m) - P(m)

Yangjun Chen ACS-4902

Solutions to the equation:

y Yo Yo 0
al|=| % 0 1
m 0 Yo 0)(m

o <

 If (y,, a5, my) IS a solution to the equation, then (cy,, ca,, cmy)
IS also a solution for any constant c.

* Yot agtmy=1.

Gaussian elimination

Jan. 2025 Yangjun Chen ACS-4902

Approximation by the method of relaxation:

» Start with some estimate of the solution and repeatedly multiply
the estimate by M.

 As long as the columns of M each add up to 1, then the sum of
the values of the variables will not change, and eventually they
converge to the distribution of the walker’s location.

 |In practice, 50 to 100 iterations of this process suffice to get very
close to the exact solution.

Suppose we start with (y, a, m) = (1/3, 1/3, 1/3). We have

Jan. 2025 Yangjun Chen ACS-4902

At the next iteration, we multiply the new estimate (2/6, 3/6, 1/6)
by M, as:

512) (v 1y o) [2/6]
4/12 | = | 14 0 1 3/6
3/12) (0 1) 0) (1/6)

If we repeat this process, we get the following sequence of vectors:

(9124 | (20/48) (2/5)
11/24| , [17/48| ,, | 2/5
4/24 | |11/48) 15 |

Jan. 2025 Yangjun Chen ACS-4902

Spider Traps and Dead Ends

 Spider traps. There are sets of Web pages with the property that
If you enter that set of pages, you can never leave because there
are no links from any page in the set to any page outside the set.

» Dead ends. Some Web pages have no out-links. If the random
walker arrives at such a page, there is no place to go next, and the
walk ends.

- Any dead end Is, by itself, a spider trap. Any page that links

only to itself is a spider trap.
- If a spider trap can be reached from outside, then the random

walker may wind up there eventually and never leave.

Yangjun Chen ACS-4902

Jan. 2025

Spider Traps and Dead Ends

Problem:

Jan. 2025 Yangjun Chen ACS-4902

Solutions to the equation:

y 1, Y% 0]y
al=|v% 0 11| a
\m/ O]/2 O \m/
o (y] (3]
Initially, | 3| = | 1/3
\m/ \1/3/
‘13 (2/6) (3/12) (5/24) (8/48"° ‘o
13| | /6| [2/12| |3/24 | |s/48 | 0
\1/3) | 3/6) |7/12) |16/24) |35/48, o

Jan. 2025 Yangjun Chen ACS-4902

Problem Caused by Spider Traps

 If we interpret these PageRank probabilities as “importance” of
pages, then the Microsoft page has gathered all importance to
itself simply by choosing not to link outside.

« The situation intuitively violates the principle that other pages,
not you yourself, should determine the importance of your page.

Jan. 2025 Yangjun Chen ACS-4902

Problem Caused by Dead Ends

» The dead end also cause the PageRank not to reflect importance

of pages.
Example.
pl p2 p3
% o %0
M= | 1 0 0
0 Vs 0
1/3 2[6 | [3/12| |5/24 8/48 0

X \ s

Jan. 2025 Yangjun Chen ACS-4902

PageRank Accounting for Spider Traps and Dead Ends

we let the walker follow a random out-link,
If there Is one, with probability B (normally, 0.8 <3 <0.9). With
probability 1 - B (called the taxation rate), we remove that walker
and deposit a new walker at a randomly chosen Web page.

 If the walker gets stuck in a spider trap, it doesn’t matter because
after a few time steps, that walker will disappear and be replaced
by a new walker.

 |If the walker reaches a dead end and disappears, a new walker

will take over shortly.

Jan. 2025 Yangjun Chen ACS-4902

Yo 0 0
0 Yo 1

Let P, and P4 be the new and old distributions of the location of
the walker after one iteration, the relationship between these two
can be expressed as:

Jan. 2025 Yangjun Chen ACS-4902

The meaning of the above equation is:

With probability 0.8, we multiply P, by the matrix of the Web to
get the new location of the walker, and with probability 0.2 we start
with a new walker at a random place.

If we start with P, = (1/3, 1/3, 1/3) and repeatedly compute P,
and then replace P,,, by P, We get the following sequence of
approximation to the asymptotic distribution of the walker:

7333) (.333) (.280) (.259° (7/33)
333 | |200]| | 300 [.179| 5/33
333] |.467) | 520) |.563 21/33

Jan. 2025 Yangjun Chen ACS-4902

Example.

Jan. 2025

Yangjun Chen

pl
»
M= | 1
0
0
0| Pyyt0.2
0

Y

Yo

(13
1/3

13,

If we start with P, = (1/3, 1/3, 1/3) and repeatedly compute P,
and then replace P, by P,.,, We get the following sequence of
approximation to the asymptotic distribution of the walker:

7333) (333) (280) [.259° 35/165
333 | | 200 |.200]| |.179 ... |25/165
(.333) 200) |.147 | [.147 21/165

Notice that these probabilities do not sum to one, and there is slightly
more than 50% probability that the walker 1s “lost” at any given
time. However, the ratio of the importance of Yahoo!, and Amazon
are the same as in the above example. That makes sense because in
both the cases there are no links from the Microsoft page to
Influence the importance of Yahoo! or Amazon.

Jan. 2025 Yangjun Chen ACS-4902

Topic-Specific PageRank
The calculation o PageRank should be biased to favor certain pages.
Teleport Sets

Choose a set of pages about a certain topic (e.g., sport) as a teleport
set.

Jan. 2025 Yangjun Chen ACS-4902

Jan. 2025

QD <

Yo
Yo

Yo

Yo

Yo
0
Yo

Yangjun Chen

—

QD <

+0.2

Topic-Specific PageRank

The for setting up the equations in a topic-specific
PageRank problem is as follows.

Suppose there are k pages in the teleport set. Let T be a column-
vector that has 1/k in the positions corresponding to members of the
teleport set and O elsewhere. Let M be the transition matrix of the
Web. Then, we must solve by relaxation the following iterative rule:
4 I

I:)new - BMPoId + (1 . B)T T =

Jan. 2025 Yangjun Chen ACS-4902

