Network Flow

- What is a network?
- Flow network and flows
- Ford-Fulkerson method
 - Residual networks
 - Augmenting paths
 - Cuts of flow networks
- Max-flow min-cut theorem

Chapter 26: Maximum Flow

- A directed graph is interpreted as a flow network:
 - A material coursing through a system from a source, where the material is produced, to a sink, where it is consumed.
 - The source produces the material at some steady rate, and the sink consumes the material at the same rate.
- Maximum problem: to compute the greatest rate at which material can be shipped from the source to the sink.

■ Example

- Applications which can be modeled by the maximum flow
 - Liquids flowing through pipes
 - Parts through assembly lines
 - current through electrical network
 - information through communication network

■ Definition – flow networks and flows

- A flow network G = (V, E) is a directed graph in which each edges $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$.
- source: s; sink: t
- For every vertex $v \in V$, there is a path:

- A flow in G is a real-valued function $f: V \times V \to \mathbf{R}$ that satisfies the following properties:

Capacity constraint: For all $u, v \in V, f(u, v) \le c(u, v)$.

Skew symmetry: For all $u, v \in V, f(u, v) = -f(v, u)$.

Flow conservation: For all $u \in V - \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$.

The quantity f(u, v), which can be positive, zero, or negative, is called the **flow** from vertex u to vertex v. The value of a flow f is defined as the total flow out of the source

$$/f/=\sum_{v\in V}f(s,v)$$

■ Example

■ Example

 $\sum_{v \in V} f(u, v) = 0.$ The total flow out of a vertex is 0.

 $\sum_{u \in V} f(u, v) = 0.$ The total flow into a vertex is 0.

The total positive flow entering a vertex v is defined by

$$\sum_{u \in V, f(u,v) > 0} f(u,v)$$

The *total net flow* at a vertex is the total positive flow leaving the vertex minus the total positive flow entering the vertex.

The *interpretation* of the flow-conservation property:

- The total positive flowing entering a vertex other than the source or sink must equal the total positive flow leaving that vertex.
- For all $u \in V \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$. That is, the total flow out of u is 0.

For all $v \in V - \{s, t\}$, $\sum_{u \in V} f(u, v) = 0$. That is, the total flow into v is 0.

■Networks with multiple sources and sinks

- Introduce *supersource* s and *supersink* t

■ Working with flows

- implicit summation notation

$$f(X, Y) = \sum_{x \in X} \sum_{y \in Y} f(x, y)$$

The flow-conservation constraint can be re-expressed as

$$f(u, V) = 0$$
 for all $u \in V - \{s, t\}$.

- **Lemma 26.1** Let G = (V, E) be a flow network, and let f be a flow in G. Then, the following equalities hold:
 - 1. For all $X \subseteq V$, we have f(X, X) = 0.
 - 2. For all $X, Y \subseteq V$, we have f(X, Y) = -f(Y, X).
 - 3. For all X, Y, $Z \subseteq V$ with $X \cap Y = \emptyset$, we have the sums

$$f(X \cup Y, Z) = f(X, Z) + f(Y, Z),$$

$$f(Z, X \cup Y) = f(Z, X) + f(Z, Y).$$

■ Working with flows

-
$$|f| = f(V, t)$$

 $|f| = f(s, V)$
 $= f(V, V) - f(V - s, V)$
 $= -f(V - s, V)$
 $= f(V, V - s)$
 $= f(V, t) + f(V, V - s - t)$
 $= f(V, t)$

The Ford-Fulkerson method

- The maximum-flow problem: given a flow network G with source s and sink t, we wish to find a flow of maximum value.
- important concepts:
 residual networks
 augmenting paths
 cuts

Ford-Fulkerson-Method(G, s, t)

- 1. Initialize flow f to 0
- 2. **while** there exists an augmenting path *p*
- 3. **do** augment flow f along p
- 4. $\operatorname{return} f$

Residual networks

- Given a flow network and a flow, the residual network consists of edges that can admit more flow.
- Let f be a flow in G = (V, E) with source s and sink t. Consider a pair of vertices $u, v \in V$. The amount of additional flow we can push from u to v before exceeding the capacity c(u, v) is the **residual capacity** of (u, v), given by

$$c_f(u, v) = c(u, v) - f(u, v).$$

- Example

If
$$c(u, v) = 16$$
 and $f(u, v) = 11$, then $c_f(u, v) = 16 - 11 = 5$.
If $c(u, v) = 16$ and $f(u, v) = -4$, then $c_f(u, v) = 16 - (-4) = 20$.

Residual networks

- Given a flow network G = (V, E) and a flow f, the **residual network** of G induced by f is $G_f = (V, E_f)$, where $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}.$

- Example

■ Residual networks

residual network:

$$|E_f| \leq 2|E|$$

■ Residual networks

Lemma 26.2 Let G = (V, E) be a network with source s and sink t, and let f be a flow in G. Let G_f be the residual network of G induced by f, and let f be a flow in G_f . Then, the flow sum f + f' (defined by (f + f')(u, v) = f(u, v) + f'(u, v)) is a flow in G with value |f + f'| = |f| + |f'|.

Proof. We must verify that skew symmetry, the capacity constraints, and flow conservation are obeyed.

skew symmetry:

$$(f+f')(u, v) = f(u, v) + f'(u, v) = -f(v, u) - f'(v, u)$$
$$= -(f(v, u) + f'(v, u)) = -(f+f')(v, u).$$

capacity constraint:

$$(f+f')(u, v) = f(u, v) + f'(u, v)$$

 $\leq f(u, v) + (c(u, v) - f(u, v))$
 $= c(u, v).$

flow conservation:

$$\sum_{v \in V} (f + f')(u, v) = \sum_{v \in V} (f(u, v) + f'(u, v))$$
$$= \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v)$$
$$= 0 + 0 = 0.$$

Finally, we have

$$|f+f'| = \sum_{v \in V} (f+f')(s,v) = \sum_{v \in V} (f(s,v)+f'(s,v))$$

$$= \sum_{v \in V} f(s,v) + \sum_{v \in V} f'(s,v)$$

$$= |f|+|f'|$$

Augmenting paths

- Given a flow network G = (V, E) and a flow f, an augmenting path p is a simple path from s to t in the residual network G_f .

Augmenting paths

- In the above above residual network, path $s \rightarrow v_2 \rightarrow v_3 \rightarrow t$ is an augmenting path.
- We can increase the flow through each edge of this path by up to 4 units without violating a capacity constraint since the smallest residual capacity on this path is $c_f(v_2, v_3) = 4$.
- residual capacity of an augmenting path $c_f(p) = \min\{c_f(u, v): (u, v) \text{ is on } p\}.$
- **Lemma 26.3** Let G = (V, E) be a network, let f be a flow in G, and let p be an augmenting path in G_f . Define a function $f_p: V \times V \to R$ by

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \text{ is on } p, \\ -c_f(p) & \text{if } (v, u) \text{ is on } p, \\ 0 & \text{otherwise.} \end{cases}$$

Then, f_p is a flow in G_f with value $|f_p| = c_f(p)$.

- Residual network induced by the new flow

Augmenting paths

- Corollary 26.4 Let G = (V, E) be a network, let f be a flow in G, and let p be an augmenting path in G_f . Let f_p be defined as in Lemma 26.3. Define a function f': $V \times V \to \mathbf{R}$ by $f' = f + f_p$.

Then, f is a flow in G with value $|f'| = |f| + |f_p| > |f|$. *Proof.* Immediately from Lemma 26.2 and 26.3.

■ Cuts of flow networks

- The Ford-Fulkerson method repeatedly augments the flow along augmenting paths until a maximum flow has been found.
- A flow is maximum if and only if its residual network contains no augmenting path.

Cuts of flow networks

- A cut (S, T) of flow network G = (V, E) is a partition of V into S and T = V S such that $s \in S$ and $t \in T$.
- *net flow* across the cut (S, T) is defined to be f(S, T).

$$f({s, v_1, v_2}, {v_3, v_4, t}) = f(v_1, v_3) + f(v_2, v_3) + f(v_2, v_4)$$

= 12 + (-4) + 11 = 19.

The net flow across a cut (S, T) consists of positive flows in both direction.

Cuts of flow networks

- The capacity of the cut (S, T) is denoted by c(S, T), which is computed only from edges going from S to T.

$$c({s, v_1, v_2}, {v_3, v_4, t}) = c(v_1, v_3) + c(v_2, v_4)$$

= 12 + 14 = 26.

■ Cuts of flow networks

- The following lemma shows that the net flow across any cut is the same, and it equals the value of the flow.

Lemma 26.5 Let f be a flow is a flow network G with source s and sink t, and let (S, T) be a cut of G. Then, the net flow across (S, T) is f(S, T) = |f|.

Proof. Note that f(S - s, V) = 0 by flow conservation. So we have

$$f(S, T) = f(S, V) - f(S, S)$$

= $f(S, V)$
= $f(S, V) + f(S - S, V)$
= $f(S, V)$
= $|f|$.

Cuts of flow networks

- Corollary 26.6 The value of any flow in a flow network *G* is bounded from above by the capacity of any cut of *G*. *Proof*.

$$|f| = f(S, T)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u, v)$$

$$\leq \sum_{u \in S} \sum_{v \in T} c(u, v)$$

$$= c(S, T).$$

■ Max-flow min-cut theorem

Theorem 26.7 If f is a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

Proof. (1) \Rightarrow (2): Suppose for the sake of contradiction that f is a maximum flow in G but that G_f has an augmenting path p. Then, by Corollary 26.4, the flow sum $f + f_p$, where f_p is given by Lemma 26.3, is a flow in G with value strictly greater than |f|, contradicting the assumption that f is a maximum flow.

■ Max-flow min-cut theorem

Theorem 26.7 If f is a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

Proof. (2) ⇒ (3): Suppose that G_f has no augmenting path. Define $S = \{v \in V : \text{ there exists a path from } s \text{ to } v \text{ in } G_f\}$ and T = V - S. The partition (S, T) is a cut: we have $s \in S$ trivially and $t \notin S$ because there is no path from s to t in G_f . For each pair of vertices u and v such that $u \in S$ and $v \in T$, we have f(u, v) = c(u, v), since otherwise $(u, v) \in E_f$, which would place v in set S. By Lemma 26.5, therefore, |f| = f(S, T) = c(S, T).

■ Max-flow min-cut theorem

Theorem 26.7 If f is a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

Proof. (3) \Rightarrow (1): By Corollary 26.6, $|f| \le c(S, T)$ for all cuts (S, T). The condition |f| = c(S, T) thus implies that f is a maximum flow.

■ Ford-Fulkerson algorithm

Ford_Fulkerson(*G*, *s*, *t*)

- 1. **for** each edge $(u, v) \in E(G)$
- 2. **do** $f(u, v) \leftarrow 0$
- 3. $f(v, u) \leftarrow 0$
- 4. while there exists a path p from s to t in G_f
- 5. **do** $c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}$
- 6. **for** each edge (u, v) is in p
- 7. $\mathbf{do}\,f(u,\,v) \leftarrow f(u,\,v) + c_f(p)$
- 8. $f(v, u) \leftarrow -f(u, v)$

Initially, the flow on edge is 0.

The corresponding residual network:

Pushing a flow 4 on p1 (an augmenting path)

The corresponding residual network:

Pushing a flow 7 on p2 (an augmenting path)

The corresponding residual network:

Pushing a flow 8 on p3 (an augmenting path)

The corresponding residual network:

Pushing a flow 4 on p4 (an augmenting path)

The corresponding residual network: no augmenting paths!

Analysis of Ford-Fulkerson algorithm

In practice, the maximum-flow problem often arises with integral capacities. If the capacities are rational numbers, an appropriate scaling transformation can be used to make them all integral. Under this assumption, a straightforward implementation of Ford-Fulkerson algorithm runs in time $O(E/f^*|)$, where f^* is the maximum flow found by the algorithm.

The analysis is as follows:

- 1. Lines 1-3 take time $\Theta(E)$.
- 2. The while-loop of lines 4-8 is executed at most $|f^*|$ times since the flow value increases by at least one unit in each iteration. Each iteration takes O(E) time.