
File Organizations

Jan. 2024 Yangjun Chen ACS-7102 1

Outline: Hashing (5.9, 5.10, 3rd. ed.; 13.8, 4th, 5th ed.; 17.8, 6th ed.)

• external hashing

• static hashing & dynamic hashing

• hash function

• mathematical function that maps a key to a bucket
address

• collisions

• collision resolution scheme

• open addressing

• chaining

• multiple hashing

• linear hashing

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 2

Mapping a table into a file

ssn name bdate sex address salary

… ...

Employee

file

mapping

• Block (or page)

- access unit of operating system

- block size: range from 512 to 4096 bytes

• Bucket

- access unit of database system

- A bucket contains one or more blocks.

• A file can be considered as a collection of buckets.

Each bucket has an address.

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 3

External Hashing

• Consider a file comprising a primary area and an

overflow area

Records hash to one of

many primary buckets

Records not fitting into

the primary area are

relegated to overflow

• Common implementations are static - the number of primary

buckets is fixed - and we expect to need to reorganize this

type of files on a regular basis.

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 4

External Hashing

•Consider a static hash file comprising M primary buckets

•We need a hash function that maps the key onto {0, 1, … M-1}

•If M is prime and Key is numeric then

Hash(Key)= Key mod M

can work well

•A collision may occur when more than one records hash to the
same address

•We need a collision resolution scheme for overflow handling
because the number of collisions for one primary bucket can
exceed the bucket capacity

• open addressing

• chaining

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 5

Overflow handling

• Open addressing

• subsequent buckets are examined until an open record position

is found

• no need for an overflow area

• consider records being inserted R1, R2, R3, R4, R5, R6, R7

with bucket capacity of 2 and hash values 0, 1, 2, 1, 1, 0, 3

0 1 2 3 4

How do we

handle retrieval,

deletion?

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 6

• consider records being inserted R1, R2, R3, R4, R5, R6, R7

with bucket capacity of 2 and hash values 0, 1, 2, 1, 1, 0, 3

0 1 2 3 4

R1

R1 R2

R1 R2 R3

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 7

R1, R2, R3, R4, R5, R6, R7

hash values: 0, 1, 2, 1, 1, 0, 3

0 1 2 3 4

R1 R2 R3R4

R1 R2 R3R4 R5

R6R1 R2 R3R4 R5

R6R1 R2 R3R4 R5 R7

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 8

Overflow handling

• Chaining

• a pointer in the primary bucket points to the first overflow

record

• overflow records for one primary bucket are chained together

• consider records being inserted R1, R2, R3, R4, R5, R6, R7,

R8, R9, R10, R11.

• with bucket capacity of 2 and hash values 1, 2, 3, 2, 2, 1, 4,

2, 3, 3, 3.

• deletions?

0 1 2 3 4
Primary Area Overflow Area

File Organizations

Jan. 2024

9

R1 R2 R3R4 R5

R1 R2 R3R4 R5R6 R7 R8

Jan. 2017R1 R2 R3R4 R5R6 R7 R8R9 R10 R11

Jan. 2017 Yangjun Chen ACS-7102

R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11

1, 2, 3, 2, 2, 1, 4, 2, 3, 3, 3

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 10

Overflow handling

• Multiple Hashing

• when collision occurs a next hash function is tried to find an

unfilled bucket

• eventually we would resort to chaining

• note that open addressing can suffer from poor performance

due to islands of full buckets occurring and having a tendency

to get even longer - using a second hash function helps avoid

that problem

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 11

Linear Hashing

• A dynamic hash file:

grows and shrinks gracefully

• initially the hash file comprises M primary buckets numbered 0,
1, … M-1

• the hashing process is divided into several phases (phase 0,
phase 1, phase 2, …). In phase j, records are hashed according
to hash functions hj(key) and hj+1(key)

• hj(key) = key mod (2j*M)

phase 0: h0(key) = key mod (20*M), h1(key) = key mod (21*M)

phase 1: h1(key) = key mod (21*M), h2(key) = key mod (22*M)

phase 2: h2(key) = key mod (22*M), h3(key) = key mod (23*M)

… ...

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 12

Linear Hashing

• hj(key) is used first; to split, use hj+1(key)

• splitting a bucket means to redistribute the records into two

buckets: the original one and a new one. In phase j, to determine

which ones go into the original while the others go into the new

one, we use hj+1(key) = key mod 2j+1*M to calculate their

address.

• splitting buckets

splitting occurs according to a specific rule such as

- an overflow occurring, or

- the load factor reaching a certain value, etc.

• a split pointer keeps track of which bucket to split next

• split pointer goes from 0 to 2j*M - 1 during the jth phase, j= 0, 1,

2, … ...

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 13

Linear Hashing

1. What is a phase?

2. When to split a bucket?

3. How to split a bucket?

4. What bucket will be chosen to split next?

5. How do we find a record inserted into a linear hashing file?

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 14

Linear Hashing, example

• initially suppose M=4

• h0(key) = key mod M; i.e. key mod 4 (rightmost 2 bits)

• h1(key) = key mod 2*M

0 1 2 3

0 1 2 3 4

Capacity of a bucket is 2.

As the file grows, buckets

split and records are

redistributed using h1(key)

= key mode 2*M.n=0

n=1 after the split

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 15

Linear Hashing, example

• collision resolution strategy: chaining

• split rule: if load factor > 0.70

• insert the records with key values:

0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

0 1 2 3 4 5 6 7

Buckets to be added during the expansion

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 16

Linear Hashing, example

• when inserting the sixth record (using h0 = Key mod M) we

would have

0100

1000
0001

0010

1110

0 1 2 3

0011

n=0 before the split

(n is the split point,

i.e., the point to the

bucket to be split.)

0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 17

Linear Hashing, example

• when inserting the sixth record (using h0 = Key mod M) we

would have

• but the load factor 6/8= 0.75 > 0.70 and so bucket 0 must be

split (using h1 = Key mod 2M):

0100

1000
0001

0010

1110

0 1 2 3

0011

0 1 2 3 4

1000 0001
0010

1110
0011 0100

n=0 before the split

(n is the point to the

bucket to be split.)

n=1 after the split

load factor: 6/10=0.6

no split

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 18

Linear Hashing, example

0 1 2 3 4

1000 0001
0010

1110
0011 0100

n=1

load factor: 7/10=0.7

no split

insert(0101)

1000
0001

0101

0010

1110
0011 0100

0 1 2 3 4

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 19

Linear Hashing, example

0 1 2 3 4

1000
0001

0101

0010

1110
0011 0100

n=1

load factor: 8/10=0.8

split using h1.

insert(1010)

1000
0001

0101

0010

1110
0011 0100

1010

overflow

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 20

Linear Hashing, example

0 1 2 3 4 5

1000 0001
0010

1110
0011 0100

n=2

load factor:

8/12=0.66

no split

1010

overflow

0101

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 21

Linear Hashing, example

n=2

load factor:

9/12=0.75

split using h1.

1000 0001
0010

1110
0011 0100

1010

overflow

0101

0 1 2 3 4 5

1000 0001
0010

1110

0011

0111
0100

1010

overflow

0101

insert(0111)

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 22

Linear Hashing, example

n=3

load factor: 9/14=0.642

no split.

1000 0001
0010

1010

0011

0111
0100 0101 1110

1000 0001
0010

1010

0011

0111
0100 0101 1110

insert(1100)

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 23

Linear Hashing, example

n=3

load factor: 10/14=0.71

split using h1.

1000

1100
0001

0010

1010

0011

0111
0100 0101 1110

1000

1100
0001

0010

1010
0011 0100 0101 1110 0111

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 24

Linear Hashing, example

n=4

load factor: 10/16=0.625

no split.

• At this point, all the 4 (M) buckets are split. The size of the primary

area becomes 2M. n should be set to 0. It begins a second phase.

• In the second phase, we will use h1 to insert records and h2 to split

a bucket.

- note that h1(K) = K mod 2M and h2(K) = K mod 4M.

1000

1100
0001

0010

1010
0011 0100 0101 1110 0111

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 25

Linear Hashing including two Phases:

- collision resolution strategy: chaining

- split rule: load factor > 0.7

- initially M = 4 (M: size of the primary area)

- hash functions: hi(key) = key mod 2i  M (i = 0, 1, 2, …)

- bucket capacity = 2

Trace the insertion process of the following keys into a linear

hashing file:

3, 2, 4, 1, 8, 14, 5, 10, 7, 24, 17, 13, 15.

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 26

The first phase – phase0

• when inserting the sixth record we would have

• but the load factor 6/8= 0.75 > 0.70 and so bucket 0 must be

split (using h1 = Key mod 2M):

4

8
1

2

14

0 1 2 3

3

0 1 2 3 4

8 1
2

14
3 4

n=0 before the split

(n is the point to the
bucket to be split.)

n=1 after the split

load factor: 6/10=0.6

no split

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 27

0 1 2 3 4

8 1
2

14
3 4

n=1

load factor: 7/10=0.7

no split

insert(5)

8
1

5

2

14
3 4

0 1 2 3 4

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 28

0 1 2 3 4

8
1

5

2

14
3 4

n=1

load factor: 8/10=0.8

split using h1.

insert(10)

8
1

5

2

14
3 4

10

overflow

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 29

0 1 2 3 4 5

8 1
2

14
3 4

n=2

load factor: 8/12=0.66

no split

10

overflow

5

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 30

n=2

load factor: 9/12=0.75

split using h1.

8 1
2

14
3 4

10

overflow

5

0 1 2 3 4 5

8 1
2

14

3

7
4

10

overflow

5

insert(7)

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 31

n=3

load factor: 9/14=0.642

no split.

8 1
2

10

3

7
4 5 14

8 1
2

10

3

7
4 5 14

insert(24)

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 32

n=3

load factor: 10/14=0.71

split using h1.

8

24
1

2

10

3

7
4 5 14

8

24
1

2

10
3 4 5 14 7

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 33

n=4

8

24
1

2

10
3 4 5 14 7

The second phase – phase1

8

24
1

2

10
3 4 5 14 7

n = 0; using h1 = Key mod 2M to insert and

h2 = Key mod 4M to split.

insert(17)

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 34

8

24

1

17

2

10
3 4 5 14 7

n=0

load factor: 11/16=0.687

no split.

8

24

1

17

2

10
3 4 5 14 7

insert(13)

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 35

8

24

1

17

2

10
3 4

5

13
14 7

n=0

load factor: 12/16=0.75

split bucket 0, using h2:

h2 = Key mod 4M

1

17

2

10
3 4

5

13
14 7

8

24

File Organizations

Jan. 2024 Yangjun Chen ACS-7102 36

n=1

load factor: 13/18=0.722

split bucket 1, using h2.

1

17

2

10
3 4

5

13
14 7

8

24

insert(15)

1

17

2

10
3 4

5

13
14

7

15

8

24

1

17

2

10
3 4

5

13
14

7

15

8

24

