File Organizations

,‘k\\

Outline: Hashing (5.9, 5.10, 3. ed.; 13.8, 4t 5t"ed.; 17.8, 6% ed.)
« external hashing
% » static hashing & dynamic hashing

e hash function

« mathematical function that maps a key to a bucket
address

e collisions
« collision resolution scheme
 open addressing
* chaining
 multiple hashing

» |inear hashing

Jan. 2024 Yangjun Chen ACS-7102 1

File Organizations

Mapping a table into a file

Employee

ssn | name | bdate | sex |address | salary

vping
file
 Block (or page) —
- Dblock size: range from 512 to 4096 bytes
2

- access unit of operating system
» Bucket

- access unit of database system
- A bucket contains one or more blocks.

« Afile can be considered as a collection of buckets.
Each bucket has an address.

Jan. 2024 Yangjun Chen ACS-7102

File Organizations

External Hashing

 Consider a file comprising a primary area and an
overflow area

— Records hash to one of
— many primary buckets

— Records not fitting into
/ g

the primary area are
relegated to overflow

« Common implementations are static - the number of primary
buckets is fixed - and we expect to need to reorganize this
type of files on a regular basis.

Jan. 2024 Yangjun Chen ACS-7102 3

File Organizations

External Hashing

«Consider a static hash file comprising M primary buckets
*We need a hash function that maps the key onto {0, 1, ... M-1}
If M Is prime and Key Is numeric then
Hash(Key)= Key mod M
can work well

» A collision may occur when more than one records hash to the
same address
*\We need a collision resolution scheme for overflow handling
because the number of collisions for one primary bucket can
exceed the bucket capacity
* 0pen addressing

* chaining

Jan. 2024 Yangjun Chen ACS-7102 4

File Organizations

Overflow handling

» Open addressing

» subsequent buckets are examined until an open record position
Is found

e no need for an overflow area

» consider records being inserted R1, R2, R3, R4, R5, R6, R7
with bucket capacity of 2 and hash values 0, 1, 2,1, 1,0, 3

How do we
handle retrieval,
deletion?

Jan. 2024 Yangjun Chen ACS-7102 5

File Organizations

» consider records being inserted R1, R2, R3, R4, R5, R6, R7
with bucket capacity of 2 and hash values 0, 1, 2,1, 1,0, 3

S N .
0 1 2 3 4
S A I
i [R2 [RE ||

Jan. 2024 Yangjun Chen ACS-7102 6

File Organizations

R1, R2, R3, R4, R5, R6, R7
hash values: 0,1,2,1,1,0, 3

Rl [R2R4R3 | |

0 1 2 3 4
Rl |R2R4R3RY |
R1 R6|R2R4 R3 RE ! |
R1 R6| R2' R4 R3 RS R7! i

Jan. 2024 Yangjun Chen ACS-7102 7

File Organizations

Overflow handling

 Chaining

* a pointer in the primary bucket points to the first overflow
record

« overflow records for one primary bucket are chained together

« consider records being inserted R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10, R11.

« with bucket capacity of 2 and hash values 1, 2, 3, 2, 2, 1, 4,
2, 3,3, 3.

* deletions?

g L & L 2
2 12 |2 |
0 1 2 3 4

Primary Area Overflow Area

Jan. 2024 Yangjun Chen ACS-7102 8

File Organizations

R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11
1,2,3,2,2,1,4,2,3,3,3

. |RL |R2R4R3 | R5!
" | RIR6|R2 R4 R3 |RT R5' RSl
" |RIR6[R2 R4 R3R9 [R7: R5! Rg| |R10 R11

Jan. 2017 Yangjun Chen ACS-7102 9

File Organizations

Overflow handling

» Multiple Hashing

 when collision occurs a next hash function is tried to find an
unfilled bucket

» eventually we would resort to chaining

* note that open addressing can suffer from poor performance
due to islands of full buckets occurring and having a tendency
to get even longer - using a second hash function helps avoid
that problem

Jan. 2024 Yangjun Chen ACS-7102 10

File Organizations

Linear Hashing

« A dynamic hash file:
grows and shrinks gracefully

« Initially the hash file comprises M primary buckets numbered 0,
1,... M-1

« the hashing process is divided into several phases (phase O,
phase 1, phase 2, ...). In phase j, records are hashed according
to hash functions h;(key) and h;,, (key)

* hi(key) = key mod (2*M)

phase 0: hy(key) = key mod (2°*M), h,(key) = key mod (21*M)
phase 1: h,(key) = key mod (21*M), h,(key) = key mod (22*M)
phase 2: h,(key) = key mod (2°*M), h;(key) = key mod (23*M)

Jan. 2024 Yangjun Chen ACS-7102 11

File Organizations

Linear Hashing
» h;(key) Is used first; to split, use h;,,(key)

« splitting a bucket means to redistribute the records into two
buckets: the original one and a new one. In phase |, to determine
which ones go into the original while the others go into the new
one, we use h;,,(key) = key mod 2/*1*M to calculate their
address.

« splitting buckets
splitting occurs according to a specific rule such as
- an overflow occurring, or
- the load factor reaching a certain value, etc.
« a split pointer keeps track of which bucket to split next

« split pointer goes from 0 to 2/*M - 1 during the j* phase, j=0, 1,
2,

Jan. 2024 Yangjun Chen ACS-7102 12

File Organizations

Linear Hashing
1. What is a phase?
When to split a bucket?

2
3. How to split a bucket?

4. What bucket will be chosen to split next?
5

How do we find a record inserted into a linear hashing file?

Jan. 2024 Yangjun Chen ACS-7102 13

File Organizations

Linear Hashing, example

« initially suppose M=4
* hy(key) = key mod M; I.e. key mod 4 (rightmost 2 bits)

* h,(key) = key mod 2*M
1(key) Y Capacity of a bucket is 2.

As the file grows, buckets
split and records are
0 1 2 3 redistributed using h,(key)

n=0 \ = key mode 2*M.

, \

O 0O

0 1 2 3 4 n=1 after the split

Jan. 2024 Yangjun Chen ACS-7102 14

File Organizations

Linear Hashing, example

« collision resolution strategy: chaining
e split rule: if load factor > 0.70
« Insert the records with key values:
0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

Buckets to be added during the expansion

A
- ™

0 1 2 3 4 5 6 I

Jan. 2024 Yangjun Chen ACS-7102 15

File Organizations

Linear Hashing, example

 when inserting the sixth record (using h, = Key mod M) we
would have

~— ____———— n=0 before the split

0100 0010 : L
0001 0011 (n is the split point,

—— 1110 l.e., the point to the
0 1 2 3 bucket to be split.)

0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

Jan. 2024 Yangjun Chen ACS-7102 16

File Organizations

Linear Hashing, example

 when inserting the sixth record (using h, = Key mod M) we

would have
e n=0 before the split
0100 0010 : :
0001 0011 (n Is the point to the
1000 1110 bucket to be split.)
0 1 2 3

 but the load factor 6/8=0.75 > 0.70 and so bucket O must be
split (using h; = Key mod 2M):

= S n=1 after the split
1000 | 0001 ggig 0011 | 0100 | load factor: 6/10=0.6
no split
0 1 2 3 4

Jan. 2024

Yangjun Chen

ACS-7102

17

File Organizations

Linear Hashing, example

~— insert(0101)
0010
1000 OOO<1 1110 0011 | 0100
0 1 2 @ 3 4
0001 | 0010
1000 0101 | 1110 0011 | 0100
0 1 2 3 4

Jan. 2024

Yangjun Chen

ACS-7102

n=1

load factor: 7/10=0.7

no split

18

File Organizations

Linear Hashing, example

~— insert(1010)
1000 | oot | 7430, 0011 | 0100
0 1 2 3 4
|
E—— n=1
1000 [908980 o0 | 00 | sptusingh,,
overflow

1010

Jan. 2024 Yangjun Chen ACS-7102 19

File Organizations

Linear Hashing, example

— n=2
load factor:
0010 8/12=0.66
1000 | 0001 1110 0011 | 0100 | 0101 no split
0 1 2 3 4 5
overflow
1010

Jan. 2024 Yangjun Chen ACS-7102 20

File Organizations

Linear Hashing, example

~— insert(0111)
0010
1000 | 0001 1110 0011 | 0100 | 0101
overflow
1010 ~
— n=2
load factor:
0010 | 0011 N
1000 | 0001 1110 | 0111 0100 | 0101 _9/1_2—0.75
split using h;.
0 1 2 3 4 5
overflow
1010

Jan. 2024 Yangjun Chen ACS-7102 21

File Organizations

Linear Hashing, example

load factor: 9/14=0.642

0010 | 0011
1000 | 0001 1010 | o111 0100 | 0101 | 1110
n=3
no split.
— insert(1100)
0010 | 0011
1009 0001 1010 | o111 0100 | 0101 | 1110

Jan. 2024

Yangjun Chen

ACS-7102

22

File Organizations

Linear Hashing, example

1000 0010 | 0011

1100 0001 1010 | o111 0100 | 0101 | 1110
n=3
load factor: 10/14=0.71
split using h;.

1000 0010

1100 0001 1010 0011 | 0100 | 0101 | 1110 | 0111

Jan. 2024

Yangjun Chen

ACS-7102

23

File Organizations

Linear Hashing, example

1000 0001 0010 0011 | 0100 | 0101 | 1110 | 0111

1100 1010
L n=4

load factor: 10/16=0.625
no split.

At this point, all the 4 (M) buckets are split. The size of the primary
area becomes 2M. n should be set to 0. It begins a second phase.
* In the second phase, we will use h, to insert records and h, to split

a bucket.
- note that h,(K) = K mod 2M and h,(K) = K mod 4M.

Jan. 2024 Yangjun Chen ACS-7102 24

File Organizations

Linear Hashing including two Phases:

collision resolution strategy: chaining

split rule: load factor > 0.7

Initially M = 4 (M: size of the primary area)

hash functions: h.(key) = key mod 2'x M (i=0, 1, 2, ...)

- bucket capacity = 2

Trace the insertion process of the following keys into a linear
hashing file:

3,2,4,1,8,14,5,10, 7, 24, 17, 13, 15.

Jan. 2024 Yangjun Chen ACS-7102 25

File Organizations

The first phase — phase,

« when inserting the sixth record we would have

4 2 n=0 before the split

8 14 (n 1s the point to the
bucket to be split.)

0 1 2 3

 but the load factor 6/8=0.75 > 0.70 and so bucket O must be
split (using h; = Key mod 2M):

o | 2 3 ; n=1 after the split
14 load factor: 6/10=0.6
no split
0 1 2 3 4

Jan. 2024 Yangjun Chen ACS-7102 26

File Organizations

— insert(5)
2

8 1 14 3 4
0 1 2 @ 3 4

1 2 n=1
8 3 4 load factor: 7/10=0.7

5 14 .

no split

0 1 2 3 4

Jan. 2024 Yangjun Chen ACS-7102 27

File Organizations

— insert(10)

1 2
38 5 14 3 4
0 1 2 @ 3 4

1 > n=1
8 3 4 load factor: 8/10=0.8

5 14 .

split using h;.
overflow
10

Jan. 2024 Yangjun Chen ACS-7102 28

File Organizations

2
8 1 14 3 4 5
0 1 2 3 4 5
overflow
10

n=2
load factor: 8/12=0.66
no split

Jan. 2024 Yangjun Chen ACS-7102 29

File Organizations

— Insert(7)
2
8 1 14 3 4 5
overflow n=2
10 @ load factor: 9/12=0.75
split using h;.
2 3
S I VI I 2 R
0 1 2 3 4 5
overflow
10

Jan. 2024 Yangjun Chen ACS-7102 30

File Organizations

2 3
8 1 10 2 4 5 14
n=3
load factor: 9/14=0.642
no split.
— insert(24)
2 3
8 1 10 2 4 5 14 S

Jan. 2024 Yangjun Chen ACS-7102 31

File Organizations

8 2 3
24 ! 10 7 E E =
n=3
load factor: 10/14=0.71
split using h;.
8 2
54 1 10 3 4 5 14 7

Jan. 2024 Yangjun Chen ACS-7102 32

File Organizations

8 2
54 10 3 4 14
n=4
The second phase — phase,
n = 0; using h, = Key mod 2M to insert and
h, = Key mod 4M to split.
— Insert(17)
8 2
oy 10 3 4 14 7

Jan. 2024

Yangjun Chen

ACS-7102

33

File Organizations

38 1 2

24 17 10 ¢ > 2 =
n=0
load factor: 11/16=0.687
no split.

— insert(13)
8 1 2
24 17 10 3 4 54 14 Y4

Jan. 2024

Yangjun Chen

ACS-7102

34

File Organizations

S|

13 14 I

n=0

load factor: 12/16=0.75
split bucket 0, using h,:
h, = Key mod 4M

14

Jan. 2024

Yangjun Chen

ACS-7102

35

File Organizations

— Insert(15)
1 2 5 8
17 | 10 : 4 13 ol 24
1 2 5 I 8
17 | 10 = 4 13 14 15 | 24
n=1

load factor: 13/18=0.722
split bucket 1, using h,.

1 2 S| I 8
17 | 10 . 4 13 14 15 | 24

Jan. 2024 Yangjun Chen ACS-7102 36

