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Outline: Hashing (5.9, 5.10, 3rd. ed.; 13.8, 4th, 5th ed.; 17.8, 6th ed.)

• external hashing

• static hashing & dynamic hashing

• hash function

• mathematical function that maps a key to a bucket
address

• collisions

• collision resolution scheme

• open addressing

• chaining

• multiple hashing

• linear hashing
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Mapping a table into a file

ssn name bdate sex address salary

… ...

Employee

file

mapping

• Block (or page) 

- access unit of operating system

- block size: range from 512 to 4096 bytes

• Bucket

- access unit of database system

- A bucket contains one or more blocks.

• A file can be considered as a collection of buckets.

Each bucket has an address.
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External Hashing

• Consider a file comprising a primary area and an 

overflow area

Records hash to one of 

many primary buckets

Records not fitting into 

the primary area are 

relegated to overflow

• Common implementations are static - the number of primary 

buckets is fixed - and we expect to need to reorganize this 

type of files on a regular basis.



File Organizations

Jan. 2024 Yangjun Chen         ACS-7102 4

External Hashing

•Consider a static hash file comprising M primary buckets

•We need a hash function that maps the key onto {0, 1, … M-1}

•If M is prime and Key is numeric then

Hash(Key)= Key mod M

can work well

•A collision may occur when more than one records hash to the
same address

•We need a collision resolution scheme for overflow handling 
because the number of collisions for one primary bucket can 
exceed the bucket capacity

• open addressing

• chaining
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Overflow handling

• Open addressing

• subsequent buckets are examined until an open record position 

is found

• no need for an overflow area

• consider records being inserted R1, R2, R3, R4, R5, R6, R7 

with bucket capacity of 2 and hash values 0, 1, 2, 1, 1, 0, 3

0          1           2         3           4          

How do we 

handle retrieval, 

deletion?
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• consider records being inserted R1, R2, R3, R4, R5, R6, R7 

with bucket capacity of 2 and hash values 0, 1, 2, 1, 1, 0, 3

0          1           2         3           4          

R1

R1 R2

R1 R2 R3
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R1, R2, R3, R4, R5, R6, R7

hash values: 0, 1, 2, 1, 1, 0, 3

0          1           2         3           4          

R1 R2 R3R4

R1 R2 R3R4 R5

R6R1 R2 R3R4 R5

R6R1 R2 R3R4 R5 R7
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Overflow handling

• Chaining

• a pointer in the primary bucket points to the first overflow 

record

• overflow records for one primary bucket are chained together

• consider records being inserted R1, R2, R3, R4, R5, R6, R7,

R8, R9, R10, R11.

• with bucket capacity of 2 and hash values 1, 2, 3, 2, 2, 1, 4,

2, 3, 3, 3.

• deletions? 

0          1           2         3           4          
Primary Area                                     Overflow Area
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R1 R2 R3R4 R5

R1 R2 R3R4 R5R6 R7 R8

Jan. 2017R1 R2 R3R4 R5R6 R7 R8R9 R10 R11

Jan. 2017 Yangjun Chen         ACS-7102

R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11

1, 2, 3, 2, 2, 1, 4, 2, 3, 3, 3
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Overflow handling

• Multiple Hashing

• when collision occurs a next hash function is tried to find an 

unfilled bucket

• eventually we would resort to chaining

• note that open addressing can suffer from poor performance 

due to islands of full buckets occurring and having a tendency 

to get even longer - using a second hash function helps avoid 

that problem
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Linear Hashing

• A dynamic hash file:

grows and shrinks gracefully

• initially the hash file comprises M primary buckets numbered 0, 
1, … M-1

• the hashing process is divided into several phases (phase 0, 
phase 1, phase 2, …). In phase j, records are hashed according 
to hash functions hj(key) and hj+1(key)

• hj(key) = key mod (2j*M)

phase 0: h0(key) = key mod (20*M), h1(key) = key mod (21*M)

phase 1: h1(key) = key mod (21*M), h2(key) = key mod (22*M)

phase 2: h2(key) = key mod (22*M), h3(key) = key mod (23*M)

… ...
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Linear Hashing

• hj(key) is used first; to split, use hj+1(key)

• splitting a bucket means to redistribute the records into two 

buckets: the original one and a new one. In phase j, to determine 

which ones go into the original while the others go into the new 

one, we use hj+1(key) =  key mod 2j+1*M to calculate their 

address. 

• splitting buckets

splitting occurs according to a specific rule such as

- an overflow occurring, or

- the load factor reaching a certain value, etc.

• a split pointer keeps track of which bucket to split next

• split pointer goes from 0 to 2j*M - 1 during the jth phase, j= 0, 1, 

2, … ...
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Linear Hashing

1. What is a phase?

2. When to split a bucket?

3. How to split a bucket?

4. What bucket will be chosen to split next?

5. How do we find a record inserted into a linear hashing file?
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Linear Hashing, example

• initially suppose M=4 

• h0(key) = key mod M; i.e. key mod 4 (rightmost 2 bits)

• h1(key) = key mod 2*M

0          1           2           3

0          1           2            3          4           

Capacity of a bucket is 2.

As the file grows, buckets 

split and records are 

redistributed using h1(key) 

= key mode 2*M.n=0

n=1 after the split
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Linear Hashing, example

• collision resolution strategy: chaining

• split rule:  if load factor > 0.70

• insert the records with key values: 

0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

0          1           2            3          4            5           6          7          

Buckets to be added during the expansion
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Linear Hashing, example

• when inserting the sixth record (using h0 = Key mod M) we 

would have 

0100

1000
0001

0010

1110

0          1           2            3

0011

n=0 before the split

(n is the split point, 

i.e., the point to the 

bucket to be split.)

0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100
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Linear Hashing, example

• when inserting the sixth record (using h0 = Key mod M) we 

would have 

• but the load factor 6/8= 0.75 > 0.70 and so bucket 0 must be 

split (using h1 = Key mod 2M):

0100

1000
0001

0010

1110

0          1           2            3

0011

0          1           2            3          4

1000 0001
0010

1110
0011 0100

n=0 before the split

(n is the point to the 

bucket to be split.)

n=1 after the split

load factor: 6/10=0.6

no split
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Linear Hashing, example

0          1           2            3          4

1000 0001
0010

1110
0011 0100

n=1

load factor: 7/10=0.7

no split

insert(0101)

1000
0001

0101

0010

1110
0011 0100

0          1           2            3          4
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Linear Hashing, example

0          1           2            3          4

1000
0001

0101

0010

1110
0011 0100

n=1

load factor: 8/10=0.8

split using h1.

insert(1010)

1000
0001

0101

0010

1110
0011 0100

1010

overflow
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Linear Hashing, example

0          1           2            3          4            5

1000 0001
0010

1110
0011 0100

n=2

load factor:

8/12=0.66

no split

1010

overflow

0101
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Linear Hashing, example

n=2

load factor:

9/12=0.75

split using h1.

1000 0001
0010

1110
0011 0100

1010

overflow

0101

0          1           2            3          4            5

1000 0001
0010

1110

0011

0111
0100

1010

overflow

0101

insert(0111)
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Linear Hashing, example

n=3

load factor: 9/14=0.642

no split.

1000 0001
0010

1010

0011

0111
0100 0101 1110

1000 0001
0010

1010

0011

0111
0100 0101 1110

insert(1100)
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Linear Hashing, example

n=3

load factor: 10/14=0.71

split using h1.

1000

1100
0001

0010

1010

0011

0111
0100 0101 1110

1000

1100
0001

0010

1010
0011 0100 0101 1110 0111
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Linear Hashing, example

n=4

load factor: 10/16=0.625

no split.

• At this point, all the 4 (M) buckets are split. The size of the primary

area becomes 2M. n should be set to 0. It begins a second phase.

• In the second phase, we will use h1 to insert records and h2 to split

a bucket.

- note that h1(K) = K mod 2M and h2(K) = K mod 4M.

1000

1100
0001

0010

1010
0011 0100 0101 1110 0111
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Linear Hashing including two Phases:

- collision resolution strategy: chaining

- split rule: load factor > 0.7

- initially M = 4 (M: size of the primary area)

- hash functions: hi(key) = key mod 2i  M (i = 0, 1, 2, …)

- bucket capacity = 2

Trace the insertion process of the following keys into a linear

hashing file:

3, 2, 4, 1, 8, 14, 5, 10, 7, 24, 17, 13, 15.
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The first phase – phase0

• when inserting the sixth record we would have 

• but the load factor 6/8= 0.75 > 0.70 and so bucket 0 must be 

split (using h1 = Key mod 2M):

4

8
1

2

14

0          1           2            3

3

0          1           2            3          4

8 1
2

14
3 4

n=0 before the split

(n is the point to the 
bucket to be split.)

n=1 after the split

load factor: 6/10=0.6

no split
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0          1           2            3          4

8 1
2

14
3 4

n=1

load factor: 7/10=0.7

no split

insert(5)

8
1

5

2

14
3 4

0          1           2            3          4
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0          1           2            3          4

8
1

5

2

14
3 4

n=1

load factor: 8/10=0.8

split using h1.

insert(10)

8
1

5

2

14
3 4

10

overflow
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0          1           2            3          4            5

8 1
2

14
3 4

n=2

load factor: 8/12=0.66

no split

10

overflow

5
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n=2

load factor: 9/12=0.75

split using h1.

8 1
2

14
3 4

10

overflow

5

0          1           2            3          4            5

8 1
2

14

3

7
4

10

overflow

5

insert(7)
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n=3

load factor: 9/14=0.642

no split.

8 1
2

10

3

7
4 5 14

8 1
2

10

3

7
4 5 14

insert(24)
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n=3

load factor: 10/14=0.71

split using h1.

8

24
1

2

10

3

7
4 5 14

8

24
1

2

10
3 4 5 14 7



File Organizations

Jan. 2024 Yangjun Chen         ACS-7102 33

n=4

8

24
1

2

10
3 4 5 14 7

The second phase – phase1

8

24
1

2

10
3 4 5 14 7

n = 0; using h1 = Key mod 2M to insert and 

h2 = Key mod 4M to split.

insert(17)
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8

24

1

17

2

10
3 4 5 14 7

n=0

load factor: 11/16=0.687

no split.

8

24

1

17

2

10
3 4 5 14 7

insert(13)
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8

24

1

17

2

10
3 4

5

13
14 7

n=0

load factor: 12/16=0.75

split bucket 0, using h2:

h2 = Key mod 4M

1

17

2

10
3 4

5

13
14 7

8

24
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n=1

load factor: 13/18=0.722

split bucket 1, using h2.

1

17

2

10
3 4

5

13
14 7

8

24

insert(15)

1

17

2

10
3 4

5

13
14

7

15

8

24

1

17

2

10
3 4

5

13
14

7

15

8

24


